-
Notifications
You must be signed in to change notification settings - Fork 15
/
train_videollava.sh
176 lines (158 loc) · 5.14 KB
/
train_videollava.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
nvidia-smi
nvcc --version
# offline training
# export HF_HUB_OFFLINE=1
# export TRANSFORMERS_OFFLINE=1
# export HF_DATASETS_OFFLINE=1
if [ "$HF_DATASETS_OFFLINE" = 1 ]; then
echo "Warning: Offline mode is enabled. Using local copy of datasets"
DATA_CONFIG_FILE="./data_configs/train_config_offline.yaml"
else
DATA_CONFIG_FILE="./data_configs/train_video_eval_videochat.yaml" # change to this for offical training
fi
if [ "$TRANSFORMERS_OFFLINE" = 1 ]; then
echo "Warning: Offline mode is enabled. Using local copy of models"
model_name_or_path="{local_model_path}"
else
model_name_or_path="LanguageBind/Video-LLaVA-7B-hf"
fi
if [ "$HF_HUB_OFFLINE" = 1 ]; then
echo "Warning: Offline mode is enabled. Using local copy of model and datasets"
push_to_hub=False
else
push_to_hub=True
fi
if [ -z $HF_HOME ]; then
echo "HF_HOME is empty, set to default '~/.cache/huggingface/'"
export HF_HOME="~/.cache/huggingface/"
fi
if [ -z $HF_TOKEN ]; then
echo "HF token is empty, try loading from '$HF_HOME/token'"
export HF_TOKEN=$(eval "cat ${HF_HOME}/token")
fi
if [ -z $HF_TOKEN ]; then
echo "HF token cannot be found, please set your HF token"
exit 1
fi
hf_hub_user_name="Mantis-VL" # set this will push the model to your hub after training
max_seq_len=2048
lora_enabled=false
qlora_enabled=false
OUTPUT_DIR="../../checkpoints"
global_batch_size=128
RUN_NAME="videollava-7b-video-eval-50k"
export WANDB_PROJECT="Mantis"
if [ $lora_enabled = true ]; then
echo "lora is enabled"
if [ $qlora_enabled = true ]; then
echo "qlora & dora is enabled"
RUN_NAME="${RUN_NAME}_${max_seq_len}_qlora"
else
RUN_NAME="${RUN_NAME}_${max_seq_len}_lora"
fi
else
echo "lora is disabled"
RUN_NAME="${RUN_NAME}_${max_seq_len}"
fi
echo "RUN_NAME = $RUN_NAME"
hub_model_id="${hf_hub_user_name}/${RUN_NAME}" # the hub model id
hub_token=$HF_TOKEN # set in .bashrc or replace with your own token
if [ -z $hf_hub_user_name ]; then
echo "hf_hub_user_name is empty, do not push to hub"
push_to_hub=False
else
echo "hf_hub_user_name = $hf_hub_user_name"
fi
# resume from checkpoint
resume_from_checkpoint=""
if [ -d $resume_from_checkpoint ]; then
echo "resume_from_checkpoint = $resume_from_checkpoint"
export WANDB_LAST_RUN_ID="your_last_run_id"
else
echo "No checkpoint found, training from scratch"
fi
export NCCL_DEBUG=INFO;
export CXX=g++;
export MASTER_ADDR=$MASTER_ADDR
export MASTER_PORT=$MASTER_PORT
export COUNT_NODE=$WORLD_SIZE
if [ -z $HOSTNAMES ]; then
echo "HOSTNAMES is empty"
export HOSTNAMES=$(hostname | awk '{print $1}')
fi
if [ -z $MASTER_ADDR ]; then
echo "MASTER_ADDR is empty"
export MASTER_ADDR=$(hostname -I | awk '{print $1}')
fi
if [ -z $MASTER_PORT ]; then
echo "MASTER_PORT is empty"
export MASTER_PORT=12956
fi
if [ -z $COUNT_NODE ]; then
echo "COUNT_NODE is empty"
export COUNT_NODE=1
fi
if [ -z $RANK ]; then
echo "RANK is empty"
export RANK=0
fi
NGPU_PER_NODE=$(nvidia-smi --query-gpu=index --format=csv,noheader | grep -c "$(echo $CUDA_VISIBLE_DEVICES | tr ',' '\n')")
GPU=$((${COUNT_NODE} * ${NGPU_PER_NODE}))
WORKERS=$((${COUNT_NODE} * ${NGPU_PER_NODE} * 4))
if [ $WORKERS -gt 112 ]; then
WORKERS=112
fi
echo HOSTNAMES = $HOSTNAMES
echo MASTER_ADDR= $MASTER_ADDR
echo MASTER_PORT= $MASTER_PORT
echo COUNT_NODE= $COUNT_NODE
echo RANK= $RANK
echo GPU=${GPU}
echo WORKERS=$WORKERS
echo "Running ${RUN_NAME}"
if [ $lora_enabled = true ]; then
echo "lora is enabled"
config_file="./accelerate_configs/accelerate_config_zero2.yaml"
echo $config_file
else
echo "lora is disabled"
config_file="./accelerate_configs/accelerate_config_zero3.yaml"
echo $config_file
fi
per_device_train_batch_size=1
gradient_accumulation_steps=$(($global_batch_size / ($per_device_train_batch_size * $GPU)))
echo gradient_accumulation_steps=$global_batch_size / \($per_device_train_batch_size \* $GPU\) = $gradient_accumulation_steps
accelerate launch --config_file=$config_file \
--machine_rank $RANK --main_process_ip $MASTER_ADDR --main_process_port $MASTER_PORT \
--num_machines=${COUNT_NODE} --num_processes=${GPU} \
train_videollava.py --model_name_or_path $model_name_or_path \
--data_config_file $DATA_CONFIG_FILE \
--run_name $RUN_NAME \
--bf16 True \
--output_dir $OUTPUT_DIR \
--hub_model_id $hub_model_id \
--hub_token "$hub_token" \
--push_to_hub $push_to_hub \
--num_train_epochs 1 \
--per_device_train_batch_size $per_device_train_batch_size \
--per_device_eval_batch_size 1 \
--gradient_accumulation_steps $gradient_accumulation_steps \
--evaluation_strategy "no" \
--save_strategy "steps" \
--save_steps 500 \
--eval_steps 500 \
--save_total_limit 1 \
--learning_rate 5e-6 \
--weight_decay 0.01 \
--warmup_ratio 0.03 \
--lr_scheduler_type "cosine" \
--logging_steps 1 \
--tf32 True \
--gradient_checkpointing True \
--dataloader_num_workers $WORKERS \
--report_to wandb \
--do_train \
--lora_enabled $lora_enabled \
--qlora_enabled $qlora_enabled \
--max_seq_len $max_seq_len \
--resume_from_checkpoint "$resume_from_checkpoint" \