-
Notifications
You must be signed in to change notification settings - Fork 0
/
Main.py
153 lines (129 loc) · 5.87 KB
/
Main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import pickle
import numpy as np
import cv2
import face_recognition
import cvzone
import firebase_admin
from firebase_admin import credentials
from firebase_admin import db
from firebase_admin import storage
import numpy as np
from datetime import datetime
cred = credentials.Certificate("ServiceAccountKey.json")
firebase_admin.initialize_app(cred, {
'databaseURL': "",
'storageBucket': ""
})
bucket = storage.bucket()
cap = cv2.VideoCapture(1)
cap.set(3, 640)
cap.set(4, 480)
imgBackground = cv2.imread('Resources/background.png')
# Importing the mode images into a list
folderModePath = 'Resources/Modes'
modePathList = os.listdir(folderModePath)
imgModeList = []
for path in modePathList:
imgModeList.append(cv2.imread(os.path.join(folderModePath, path)))
# print(len(imgModeList))
# Load the encoding file
print("Loading Encode File ...")
file = open('EncodeFile.p', 'rb')
encodeListKnownWithIds = pickle.load(file)
file.close()
encodeListKnown, studentIds = encodeListKnownWithIds
# print(studentIds)
print("Encode File Loaded")
modeType = 0
counter = 0
id = -1
imgStudent = []
while True:
success, img = cap.read()
imgS = cv2.resize(img, (0, 0), None, 0.25, 0.25) # type: ignore
imgS = cv2.cvtColor(imgS, cv2.COLOR_BGR2RGB)
faceCurFrame = face_recognition.face_locations(imgS)
encodeCurFrame = face_recognition.face_encodings(imgS, faceCurFrame)
imgBackground[162:162 + 480, 55:55 + 640] = img
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
if faceCurFrame:
for encodeFace, faceLoc in zip(encodeCurFrame, faceCurFrame):
matches = face_recognition.compare_faces(encodeListKnown, encodeFace)
faceDis = face_recognition.face_distance(encodeListKnown, encodeFace)
# print("matches", matches)
# print("faceDis", faceDis)
matchIndex = np.argmin(faceDis)
# print("Match Index", matchIndex)
if matches[matchIndex]:
# print("Known Face Detected")
# print(studentIds[matchIndex])
y1, x2, y2, x1 = faceLoc
y1, x2, y2, x1 = y1 * 4, x2 * 4, y2 * 4, x1 * 4
bbox = 55 + x1, 162 + y1, x2 - x1, y2 - y1
imgBackground = cvzone.cornerRect(imgBackground, bbox, rt=0)
id = studentIds[matchIndex]
if counter == 0:
cvzone.putTextRect(imgBackground, "Loading", (275, 400))
cv2.imshow("Face Attendance", imgBackground)
cv2.waitKey(1)
counter = 1
modeType = 1
if counter != 0:
if counter == 1:
# Get the Data
studentInfo = db.reference(f'Students/{id}').get()
print(studentInfo)
# Get the Image from the storage
blob = bucket.get_blob(f'Images/{id}.png')
array = np.frombuffer(blob.download_as_string(), np.uint8)
imgStudent = cv2.imdecode(array, cv2.COLOR_BGRA2BGR)
# Update data of attendance
datetimeObject = datetime.strptime(studentInfo['last_attendance_time'],
"%Y-%m-%d %H:%M:%S")
secondsElapsed = (datetime.now() - datetimeObject).total_seconds()
print(secondsElapsed)
if secondsElapsed > 30:
ref = db.reference(f'Students/{id}')
studentInfo['total_attendance'] += 1
ref.child('total_attendance').set(studentInfo['total_attendance'])
ref.child('last_attendance_time').set(datetime.now().strftime("%Y-%m-%d %H:%M:%S"))
else:
modeType = 3
counter = 0
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
if modeType != 3:
if 10 < counter < 20:
modeType = 2
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
if counter <= 10:
cv2.putText(imgBackground, str(studentInfo['total_attendance']), (861, 125),
cv2.FONT_HERSHEY_COMPLEX, 1, (255, 255, 255), 1)
cv2.putText(imgBackground, str(studentInfo['major']), (1006, 550),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(imgBackground, str(id), (1006, 493),
cv2.FONT_HERSHEY_COMPLEX, 0.5, (255, 255, 255), 1)
cv2.putText(imgBackground, str(studentInfo['standing']), (910, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(studentInfo['year']), (1025, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
cv2.putText(imgBackground, str(studentInfo['starting_year']), (1125, 625),
cv2.FONT_HERSHEY_COMPLEX, 0.6, (100, 100, 100), 1)
(w, h), _ = cv2.getTextSize(studentInfo['name'], cv2.FONT_HERSHEY_COMPLEX, 1, 1)
offset = (414 - w) // 2
cv2.putText(imgBackground, str(studentInfo['name']), (808 + offset, 445),
cv2.FONT_HERSHEY_COMPLEX, 1, (50, 50, 50), 1)
imgBackground[175:175 + 216, 909:909 + 216] = imgStudent
counter += 1
if counter >= 20:
counter = 0
modeType = 0
studentInfo = []
imgStudent = []
imgBackground[44:44 + 633, 808:808 + 414] = imgModeList[modeType]
else:
modeType = 0
counter = 0
# cv2.imshow("Webcam", img)
cv2.imshow("Face Attendance", imgBackground)
cv2.waitKey(1)