-
Notifications
You must be signed in to change notification settings - Fork 0
/
GenerateRandomNoise.py
79 lines (56 loc) · 2.49 KB
/
GenerateRandomNoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
# -*- coding: utf-8 -*-
"""
Created on Mon May 11 14:53:40 2020
@author: Sylvain Rama
This will create Gaussian White noise and sort it or not. Then save it as a csv, for later analyze of Hs & Hn.
From the Materials & Methods in:
A quick and easy way to estimate entropy and mutual information for neuroscience
Mickael Zbili(1), Sylvain Rama(2)*
1, Blue Brain Project, École polytechnique fédérale de Lausanne (EPFL) Biotech Campus, Geneva, Switzerland.
2, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
*, Correspondence: Sylvain Rama, [email protected]
"""
#%% Imports
import numpy as np
import pandas as pd
import png
import os
from bokeh.plotting import figure
from bokeh.io import output_file, show
#%% Basic settings and creating the Gaussian signals with noise
duration = 100
sampling = 1
spread = 4 # Amplitude of the noise
repetitions = 100
sorted_signal = False #Choose True for sorting the signal
name = 'Noise'
length = int(duration / sampling)
np.random.seed(0) # Change seed or remove
raw = np.random.randint(spread, size = length * repetitions, dtype='int')
if sorted_signal:
raw = np.sort(raw)
name='Sorted'
noisy_signals = raw.reshape(length, repetitions) # Reshaping the signal as [duration , repetitions]
png_array = np.array(noisy_signals, dtype=np.uint8) # Conversion to 256 grey values
png.from_array(png_array, mode="L").save("D:/Python Projects/Entropy Project/Testpng.png")
size = os.path.getsize("D:/Python Projects/Entropy Project/Testpng.png")
print("Signal as PNG: " + str(size) + " Bytes")
#%% Saving the noisy signals as csv, for later use.
df = pd.DataFrame(noisy_signals, dtype='float')
df.to_csv(name + ' d=' + str(duration) + ' s=' + str(sampling)
+ ' sp=' + str(spread) + ' n=' + str(repetitions) + '.csv', index=None)
#%% Showing the noise
output_file('RandomNoise.html')
PlotWidth = 400
PlotHeight = 400
noise_figure = figure(title=name,
x_range=(0, repetitions), y_range=(0, duration),
x_axis_label='Pixels', y_axis_label='Pixels',
plot_width=int(PlotWidth), plot_height=int(PlotHeight))
noise_figure.image(image=[noisy_signals], x=0, y=0,
dw=repetitions, dh=duration,
palette="Greys8", level='image')
noise_figure.grid.grid_line_width = 0
noise_figure.toolbar.logo = None
noise_figure.toolbar_location = None
show(noise_figure)