-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathwebcam_detect.py
144 lines (114 loc) · 5.06 KB
/
webcam_detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
from tensorflow.keras.models import load_model
from keras.applications.vgg16 import preprocess_input
import tensorflow as tf
import face_recognition
import cv2
import numpy as np
import os
# Code Source: https://github.com/ageitgey/face_recognition/blob/master/examples/facerec_from_webcam_faster.py
# Get a reference to webcam #0 (the default one)
import speech_generator
from observer import Person, MaskObserver
video_capture = cv2.VideoCapture(0)
known_face_encodings = []
known_face_names = []
model_path = 'model/my_model'
model = load_model(model_path)
face_size = (125, 125)
dir = 'images/label/'
person = Person()
observer = MaskObserver()
person.attach(observer)
if os.path.exists(dir):
for filename in os.listdir(dir):
if filename.endswith(".jpg") or filename.endswith(".jpeg") or filename.endswith(".png"):
print(filename)
print(os.path.join(dir, filename))
img = face_recognition.load_image_file(os.path.join(dir, filename))
img_encoding = face_recognition.face_encodings(img)[0]
# Create arrays of known face encodings and their names
known_face_encodings.append(img_encoding)
known_face_names.append(filename.split('.')[0])
# Initialize some variables
face_locations = []
face_names = []
process_this_frame = True
predictions = { 'face': [], 'mask': [] }
while True:
# Grab a single frame of video
ret, frame = video_capture.read()
# Resize frame of video to 1/4 size for faster face recognition processing
small_frame = cv2.resize(frame, (0, 0), fx=0.25, fy=0.25)
# Convert the image from BGR color (which OpenCV uses) to RGB color (which face_recognition uses)
rgb_small_frame = small_frame[:, :, ::-1]
# Only process every other frame of video to save time
if process_this_frame:
# Find all the faces and face encodings in the current frame of video
face_locations = face_recognition.face_locations(rgb_small_frame)
face_encodings = face_recognition.face_encodings(
rgb_small_frame, face_locations)
face_names = []
for face_encoding in face_encodings:
# See if the face is a match for the known face(s)
matches = face_recognition.compare_faces(
known_face_encodings, face_encoding)
name = "Unbekannt"
# # If a match was found in known_face_encodings, just use the first one.
# if True in matches:
# first_match_index = matches.index(True)
# name = known_face_names[first_match_index]
# Or instead, use the known face with the smallest distance to the new face
if len(known_face_encodings) > 0:
face_distances = face_recognition.face_distance(
known_face_encodings, face_encoding)
best_match_index = np.argmin(face_distances)
if matches[best_match_index]:
name = known_face_names[best_match_index]
face_names.append(name + " " + str(int(face_distances[best_match_index]*100)) + "%")
person.update_name(name)
process_this_frame = not process_this_frame
# Display the results
for (top, right, bottom, left), name in zip(face_locations, face_names):
# Scale back up face locations since the frame we detected in was scaled to 1/4 size
top *= 4
right *= 4
bottom *= 4
left *= 4
faceImage = frame[top:bottom, left:right]
image = tf.expand_dims(cv2.resize(faceImage, face_size), 0)
result = model.predict(preprocess_input(image))
N = 5
predictions['face'].append(result[0][0])
predictions['face'] = predictions['face'][-N:]
predictions['mask'].append(result[0][1])
predictions['mask'] = predictions['mask'][-N:]
if predictions['face'] > predictions['mask']:
person.update_mask(False)
perc = round(np.average(predictions['face']) * 100, 2)
label = f'Gesicht: {perc}%'
color = (0, 0, 255)
else:
person.update_mask(True)
perc = round(np.average(predictions['mask']) * 100, 2)
label = f'Maske: {perc}%'
color = (0, 255, 0)
# Draw a box around the face
cv2.rectangle(frame, (left, top), (right, bottom), color, 2)
# Draw a label with a name below the face
cv2.rectangle(frame, (left, bottom - 30),
(right, bottom), color, cv2.FILLED)
cv2.rectangle(frame, (left - 1, top - 30),
(right + 1, top), color, cv2.FILLED)
font = cv2.FONT_HERSHEY_DUPLEX
cv2.putText(frame, name, (left + 6, bottom - 6),
font, 0.6, (0, 0, 0), 1)
cv2.putText(frame, label, (left + 6, top - 6),
font, 0.6, (0, 0, 0), 1)
# Display the resulting image
cv2.imshow('Video', frame)
# Hit 'q' on the keyboard to quit!
if cv2.waitKey(1) & 0xFF == ord('q'):
break
# Release handle to the webcam
video_capture.release()
cv2.destroyAllWindows()