-
Notifications
You must be signed in to change notification settings - Fork 185
/
Copy pathapp.py
130 lines (109 loc) · 3.72 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
# @Email: [email protected]
# @Website: https://pythonandvba.com
# @YouTube: https://youtube.com/c/CodingIsFun
# @Project: Sales Dashboard w/ Streamlit
import pandas as pd # pip install pandas openpyxl
import plotly.express as px # pip install plotly-express
import streamlit as st # pip install streamlit
# emojis: https://www.webfx.com/tools/emoji-cheat-sheet/
st.set_page_config(page_title="Sales Dashboard", page_icon=":bar_chart:", layout="wide")
# ---- READ EXCEL ----
@st.cache_data
def get_data_from_excel():
df = pd.read_excel(
io="supermarkt_sales.xlsx",
engine="openpyxl",
sheet_name="Sales",
skiprows=3,
usecols="B:R",
nrows=1000,
)
# Add 'hour' column to dataframe
df["hour"] = pd.to_datetime(df["Time"], format="%H:%M:%S").dt.hour
return df
df = get_data_from_excel()
# ---- SIDEBAR ----
st.sidebar.header("Please Filter Here:")
city = st.sidebar.multiselect(
"Select the City:",
options=df["City"].unique(),
default=df["City"].unique()
)
customer_type = st.sidebar.multiselect(
"Select the Customer Type:",
options=df["Customer_type"].unique(),
default=df["Customer_type"].unique(),
)
gender = st.sidebar.multiselect(
"Select the Gender:",
options=df["Gender"].unique(),
default=df["Gender"].unique()
)
df_selection = df.query(
"City == @city & Customer_type ==@customer_type & Gender == @gender"
)
# Check if the dataframe is empty:
if df_selection.empty:
st.warning("No data available based on the current filter settings!")
st.stop() # This will halt the app from further execution.
# ---- MAINPAGE ----
st.title(":bar_chart: Sales Dashboard")
st.markdown("##")
# TOP KPI's
total_sales = int(df_selection["Total"].sum())
average_rating = round(df_selection["Rating"].mean(), 1)
star_rating = ":star:" * int(round(average_rating, 0))
average_sale_by_transaction = round(df_selection["Total"].mean(), 2)
left_column, middle_column, right_column = st.columns(3)
with left_column:
st.subheader("Total Sales:")
st.subheader(f"US $ {total_sales:,}")
with middle_column:
st.subheader("Average Rating:")
st.subheader(f"{average_rating} {star_rating}")
with right_column:
st.subheader("Average Sales Per Transaction:")
st.subheader(f"US $ {average_sale_by_transaction}")
st.markdown("""---""")
# SALES BY PRODUCT LINE [BAR CHART]
sales_by_product_line = df_selection.groupby(by=["Product line"])[["Total"]].sum().sort_values(by="Total")
fig_product_sales = px.bar(
sales_by_product_line,
x="Total",
y=sales_by_product_line.index,
orientation="h",
title="<b>Sales by Product Line</b>",
color_discrete_sequence=["#0083B8"] * len(sales_by_product_line),
template="plotly_white",
)
fig_product_sales.update_layout(
plot_bgcolor="rgba(0,0,0,0)",
xaxis=(dict(showgrid=False))
)
# SALES BY HOUR [BAR CHART]
sales_by_hour = df_selection.groupby(by=["hour"])[["Total"]].sum()
fig_hourly_sales = px.bar(
sales_by_hour,
x=sales_by_hour.index,
y="Total",
title="<b>Sales by hour</b>",
color_discrete_sequence=["#0083B8"] * len(sales_by_hour),
template="plotly_white",
)
fig_hourly_sales.update_layout(
xaxis=dict(tickmode="linear"),
plot_bgcolor="rgba(0,0,0,0)",
yaxis=(dict(showgrid=False)),
)
left_column, right_column = st.columns(2)
left_column.plotly_chart(fig_hourly_sales, use_container_width=True)
right_column.plotly_chart(fig_product_sales, use_container_width=True)
# ---- HIDE STREAMLIT STYLE ----
hide_st_style = """
<style>
#MainMenu {visibility: hidden;}
footer {visibility: hidden;}
header {visibility: hidden;}
</style>
"""
st.markdown(hide_st_style, unsafe_allow_html=True)