Skip to content

Latest commit

 

History

History
297 lines (227 loc) · 11.3 KB

coadding.rst

File metadata and controls

297 lines (227 loc) · 11.3 KB

Coadd 1D Spectra

This document will describe how to combine the 1D spectra from multiple exposures of the same object.

PypeIt currently only offers the coadding of spectra in 1D and must be done outside of the data reduction pipeline, i.e. PypeIt will not coadd your spectra as part of the data reduction process.

The current defaults use the Optimal extraction and fluxed data.

Coadd 1dspec

The primary script is called pypeit_coadd_1dspec and takes an input YAML file to guide the process. Here is the usage:

wolverine> pypeit_coadd_1dspec -h
usage: pypeit_coadd_1dspec [-h] [--debug] infile

Script to coadd a set of spec1D files and 1 or more slits and 1 or more
objects. Current defaults use Optimal + Fluxed extraction. [v1.1]

positional arguments:
  infile      Input file (YAML)

optional arguments:
  -h, --help  show this help message and exit
  --debug     Turn debugging on

Turning on debugging will generate a series of diagnostic plots and likely hit as set_trace in the code.

Input File

The information PypeIt's coadder uses is contained within a .yaml file. At the most basic level, the file must include the names of the files to be coadded, and a series of dicts, labeled by 'a', 'b', 'c', etc., each of which has a PypeIt object identifier string (used to ID the object) and the name of an output file. Here is an example case:

'spectrograph': 'shane_kast_blue'
'filenames': ['spec1d_1.fits', 'spec1d_2.fits', 'spec1d_3.fits']
'a':
    'object': 'O503-S4701-D01-I0035'
    'outfile': 'tmp.hdf5'

The default behavior of the coadder is to use one object identifier string for all the files to be coadded. There are hard coded tolerance values in PypeIt (10 for the object identifier string and 50 for the slit identifier string) that work to find the same object across all the specified files. However, if the object changes positions along the slit over the exposures (e.g., you dithered while observing the object) this might not be the best way to coadd since the object identifier string could be very different from exposure to exposure. For this case, there is functionality to specifiy an object identifier string for each specified file. The .yaml file would look like this:

'spectrograph': 'shane_kast_blue'
'filenames': ['spec1d_1.fits', 'spec1d_2.fits', 'spec1d_3.fits']
'a':
    'object': ['O290-S1592-D02-I0002', 'O457-S1592-D02-I0003
    ', 'O626-S1592-D02-I0004']
    'outfile': 'tmp.hdf5'

There is only one object to be coadded in each data frame. The 'object' tag is a object identifier string containing the object's relative location in the slit (here, 503 with 1000 the right edge), the slit ID which is relative on the detector (4701), the detector number (01), and the science index (0035), in one of the files.

One can also set local parameters for coadding. Common keywords for coadding algorithms are listed below (:ref:`more_coadd_keys`).

The list of object identifiers in a given spec1d file can be output with the pypeit_show_1dspec script, e.g.:

pypeit_show_1dspec filename.fits --list

These can also be recovered from the object info files in the Science/folder (one per exposure).

The coadding algorithm will attempt to match this object identifier to those in each data file, within some tolerance on object and slit position. 'outfile' is the filename of the coadded spectrum produced.

Spectral Parameters

By default, the algorithm will combine the optimally extracted, fluxed spectra from each exposure. You may modify the extraction method, e.g.:

'extract': 'box'

and/or specify whether the spectrum is fluxed:

'flux': False

Note that these parameters must be outside of the 'a', 'b', 'c', etc. dicts or else they will have no effect.

Flux Scaling

Each entry can include a scale dict that will be used to scale the flux of the coadded spectrum using an input filter and magnitude. Here is an example:

'a':
    'object': ['SPAT0119-SLIT0000-DET01', 'SPAT0159-SLIT0000-DET01', 'SPAT0079-SLIT0000-DET01']
    'outfile': 'FRB181112_fors2.fits'
    'scale': {'filter': 'DES_r', 'mag': 21.73, 'mag_type': 'AB', 'masks': [[0., 6000.]]}

The call here will convolve the coadded spectrum with the DES r-band filter, and then scale the flux to give an AB magnitude of 21.73. Furthermore, the spectral wavelengths less than 6000 Ang are masked in the analysis.

Filters

Here is the set of ingested filters:

DES_g, DES_r, DES_i DES_z, DES_Y

Cosmic Ray Cleaning

By default, the script will attempt to identify additional, lingering cosmic rays in the spectrum. The algorithm employed depends on the number of input spectra. Note that most of the challenges associated with the coadding are related to CR identification, especially for cases of only two input spectra.

The main parameters driving the CR algorithms are described in :ref:`cosmic_ray_keys`.

Two Spectra

While it is possible to clean a significant fraction of any lingering CR's given 2 exposures, results are mixed and depend on the S/N ratio of the data and the presence of strong emission lines. We have now implemented three approaches, described below.

The default is bspline which is likely best for low S/N data. The algorithm may be modified with the cr_two_alg parameter.

diff

This algorithm compares the difference between the spectra and clips those that are cr_nsig away from the standard deviation.

ratio

Similar to :ref:`cr_diff` above, but the ratio is also compared. This may be the best algorithm for high S/N data with strong emission lines.

bspline

A b-spline is fit to all of the pixels of the 2 spectra. By default, a breakpoint spacing of 6 pixels is used. Very narrow and bright emission lines may be rejected with this spacing and a lower value should be used (see :ref:`cosmic_ray_keys`). Of course, lowering the spacing will increase the likelihood of including cosmic rays. This algorithm is best suited for lower S/N spectra.

Three+ Spectra

For three or more spectra, the algorithm derives a median spectrum from the data and identifies cosmic rays or other deviant pixels from large deviations off the median.

Additional Coadding Parameters

You can adjust the default methods by which PypeIt coadds spectra by adding a dict named 'global' or a 'local' dict in the object block:

'spectrograph': 'shane_kast_blue'
'filenames': ['spec1d_1.fits', 'spec1d_2.fits', 'spec1d_3.fits']
'global':
    'wave_grid_method': 'velocity'
'a':
    'object': 'O503-S4701-D01-I0035'
    'outfile': 'tmp.hdf5'
    'local':
        'otol': 10

The adjustable parameters and options are:

Wavelength Rebinning

Parameter Option Description
wave_grid_method default: concatenate create a new wavelength grid onto which multiple exposures are rebinned after first concatenating all wavelength grids
-- velocity create a new wavelength grid of constant km/s. Default is to use the median velocity width of the input spectrum pixels but a value 'v_pix' can be provided
-- pixel create a new wavelength grid of constant Angstrom specified by the input parameter 'A_pix'

Flux Scaling

Parameter Option Description
scale_method default: auto scale the flux arrays based on the root mean square value (RMS) of the S/N^2 value for all spectra; if this RMS value is less than the minimum median scale value, no scaling is applied. If the RMS value is greater than the minimum but smaller than the maximum median scale value, the applied method is the median, as described below
-- hand scale the flux arrays using values specified by the user in the input parameter 'hand_scale'. Must have one value per spectrum
-- median scale the flux arrays by the median flux value of each spectra

Cosmic Ray

Parameter Option Description
cr_everyn int; default=6 For CR cleaning of 2 spectra, this sets the spacing of the b-spline break points. Use a lower number to avoid clipping narrow emission/absorption lines, e.g. 4
cr_nsig float; default=7. Number of sigma which defines a CR
cr_two_alg str; default=bspline Algorithm to adopt for cleaning only 2 spectra

More Keywords

Here are other keywords that one may wish to set for individual objects:

Keyword Method Type Description
otol arspecobj.mtch_obj_to_objects() int Tolerance for matching object ID number

Running the Coadd Code

Once you have this .yaml file set up, you can coadd your 1d spectra by running the command:

pypeit_coadd_1dspec name_of_yaml_file.yaml

The coadder will also produce a quality assurance (QA) file named 'root_of_outfile.pdf'. In the left panel, the QA shows the chi- squared residuals of the coadded spectrum, and in the right panel, the coadded spectrum (in black) is plotted over the original spectra.