forked from neilbrown/mdadm
-
Notifications
You must be signed in to change notification settings - Fork 0
/
raid6check.c
714 lines (621 loc) · 19 KB
/
raid6check.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
/*
* raid6check - extended consistency check for RAID-6
*
* Copyright (C) 2011 Piergiorgio Sartor
*
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Author: Piergiorgio Sartor
* Based on "restripe.c" from "mdadm" codebase
*/
#include "mdadm.h"
#include <stdint.h>
#include <signal.h>
#include <sys/mman.h>
#define CHECK_PAGE_BITS (12)
#define CHECK_PAGE_SIZE (1 << CHECK_PAGE_BITS)
char const Name[] = "raid6check";
enum repair {
NO_REPAIR = 0,
MANUAL_REPAIR,
AUTO_REPAIR
};
int geo_map(int block, unsigned long long stripe, int raid_disks,
int level, int layout);
int is_ddf(int layout);
void qsyndrome(uint8_t *p, uint8_t *q, uint8_t **sources, int disks, int size);
void make_tables(void);
void ensure_zero_has_size(int chunk_size);
void raid6_datap_recov(int disks, size_t bytes, int faila, uint8_t **ptrs,
int neg_offset);
void raid6_2data_recov(int disks, size_t bytes, int faila, int failb,
uint8_t **ptrs, int neg_offset);
void xor_blocks(char *target, char **sources, int disks, int size);
/* Collect per stripe consistency information */
void raid6_collect(int chunk_size, uint8_t *p, uint8_t *q,
char *chunkP, char *chunkQ, int *results)
{
int i;
int data_id;
uint8_t Px, Qx;
extern uint8_t raid6_gflog[];
for(i = 0; i < chunk_size; i++) {
Px = (uint8_t)chunkP[i] ^ (uint8_t)p[i];
Qx = (uint8_t)chunkQ[i] ^ (uint8_t)q[i];
if((Px != 0) && (Qx == 0))
results[i] = -1;
if((Px == 0) && (Qx != 0))
results[i] = -2;
if((Px != 0) && (Qx != 0)) {
data_id = (raid6_gflog[Qx] - raid6_gflog[Px]);
if(data_id < 0) data_id += 255;
results[i] = data_id;
}
if((Px == 0) && (Qx == 0))
results[i] = -255;
}
}
/* Try to find out if a specific disk has problems in a CHECK_PAGE_SIZE page size */
int raid6_stats_blk(int *results, int raid_disks)
{
int i;
int curr_broken_disk = -255;
int prev_broken_disk = -255;
int broken_status = 0;
for(i = 0; i < CHECK_PAGE_SIZE; i++) {
if(results[i] != -255)
curr_broken_disk = results[i];
if(curr_broken_disk >= raid_disks)
broken_status = 2;
switch(broken_status) {
case 0:
if(curr_broken_disk != -255) {
prev_broken_disk = curr_broken_disk;
broken_status = 1;
}
break;
case 1:
if(curr_broken_disk != prev_broken_disk)
broken_status = 2;
break;
case 2:
default:
curr_broken_disk = prev_broken_disk = -65535;
break;
}
}
return curr_broken_disk;
}
/* Collect disks status for a strip in CHECK_PAGE_SIZE page size blocks */
void raid6_stats(int *disk, int *results, int raid_disks, int chunk_size)
{
int i, j;
for(i = 0, j = 0; i < chunk_size; i += CHECK_PAGE_SIZE, j++) {
disk[j] = raid6_stats_blk(&results[i], raid_disks);
}
}
int lock_stripe(struct mdinfo *info, unsigned long long start,
int chunk_size, int data_disks, sighandler_t *sig) {
int rv;
if(mlockall(MCL_CURRENT | MCL_FUTURE) != 0) {
return 2;
}
sig[0] = signal(SIGTERM, SIG_IGN);
sig[1] = signal(SIGINT, SIG_IGN);
sig[2] = signal(SIGQUIT, SIG_IGN);
rv = sysfs_set_num(info, NULL, "suspend_lo", start * chunk_size * data_disks);
rv |= sysfs_set_num(info, NULL, "suspend_hi", (start + 1) * chunk_size * data_disks);
return rv * 256;
}
int unlock_all_stripes(struct mdinfo *info, sighandler_t *sig) {
int rv;
rv = sysfs_set_num(info, NULL, "suspend_lo", 0x7FFFFFFFFFFFFFFFULL);
rv |= sysfs_set_num(info, NULL, "suspend_hi", 0);
rv |= sysfs_set_num(info, NULL, "suspend_lo", 0);
signal(SIGQUIT, sig[2]);
signal(SIGINT, sig[1]);
signal(SIGTERM, sig[0]);
if(munlockall() != 0)
return 3;
return rv * 256;
}
/* Autorepair */
int autorepair(int *disk, unsigned long long start, int chunk_size,
char *name[], int raid_disks, int syndrome_disks, char **blocks_page,
char **blocks, uint8_t *p, int *block_index_for_slot,
int *source, unsigned long long *offsets)
{
int i, j;
int pages_to_write_count = 0;
int page_to_write[chunk_size >> CHECK_PAGE_BITS];
for(j = 0; j < (chunk_size >> CHECK_PAGE_BITS); j++) {
if (disk[j] >= -2 && block_index_for_slot[disk[j]] >= 0) {
int slot = block_index_for_slot[disk[j]];
printf("Auto-repairing slot %d (%s)\n", slot, name[slot]);
pages_to_write_count++;
page_to_write[j] = 1;
for(i = -2; i < syndrome_disks; i++) {
blocks_page[i] = blocks[i] + j * CHECK_PAGE_SIZE;
}
if (disk[j] == -2) {
qsyndrome(p, (uint8_t*)blocks_page[-2],
(uint8_t**)blocks_page,
syndrome_disks, CHECK_PAGE_SIZE);
}
else {
char *all_but_failed_blocks[syndrome_disks];
for(i = 0; i < syndrome_disks; i++) {
if (i == disk[j])
all_but_failed_blocks[i] = blocks_page[-1];
else
all_but_failed_blocks[i] = blocks_page[i];
}
xor_blocks(blocks_page[disk[j]],
all_but_failed_blocks, syndrome_disks,
CHECK_PAGE_SIZE);
}
}
else {
page_to_write[j] = 0;
}
}
if(pages_to_write_count > 0) {
int write_res = 0;
for(j = 0; j < (chunk_size >> CHECK_PAGE_BITS); j++) {
if(page_to_write[j] == 1) {
int slot = block_index_for_slot[disk[j]];
lseek64(source[slot], offsets[slot] + start * chunk_size + j * CHECK_PAGE_SIZE, SEEK_SET);
write_res += write(source[slot],
blocks[disk[j]] + j * CHECK_PAGE_SIZE,
CHECK_PAGE_SIZE);
}
}
if (write_res != (CHECK_PAGE_SIZE * pages_to_write_count)) {
fprintf(stderr, "Failed to write a full chunk.\n");
return -1;
}
}
return 0;
}
/* Manual repair */
int manual_repair(int chunk_size, int syndrome_disks,
int failed_slot1, int failed_slot2,
unsigned long long start, int *block_index_for_slot,
char *name[], char **stripes, char **blocks, uint8_t *p,
int *source, unsigned long long *offsets)
{
int i;
int fd1 = block_index_for_slot[failed_slot1];
int fd2 = block_index_for_slot[failed_slot2];
printf("Repairing stripe %llu\n", start);
printf("Assuming slots %d (%s) and %d (%s) are incorrect\n",
fd1, name[fd1],
fd2, name[fd2]);
if (failed_slot1 == -2 || failed_slot2 == -2) {
char *all_but_failed_blocks[syndrome_disks];
int failed_data_or_p;
if (failed_slot1 == -2)
failed_data_or_p = failed_slot2;
else
failed_data_or_p = failed_slot1;
printf("Repairing D/P(%d) and Q\n", failed_data_or_p);
for (i = 0; i < syndrome_disks; i++) {
if (i == failed_data_or_p)
all_but_failed_blocks[i] = blocks[-1];
else
all_but_failed_blocks[i] = blocks[i];
}
xor_blocks(blocks[failed_data_or_p],
all_but_failed_blocks, syndrome_disks, chunk_size);
qsyndrome(p, (uint8_t*)blocks[-2], (uint8_t**)blocks,
syndrome_disks, chunk_size);
} else {
ensure_zero_has_size(chunk_size);
if (failed_slot1 == -1 || failed_slot2 == -1) {
int failed_data;
if (failed_slot1 == -1)
failed_data = failed_slot2;
else
failed_data = failed_slot1;
printf("Repairing D(%d) and P\n", failed_data);
raid6_datap_recov(syndrome_disks+2, chunk_size,
failed_data, (uint8_t**)blocks, 1);
} else {
printf("Repairing D and D\n");
raid6_2data_recov(syndrome_disks+2, chunk_size,
failed_slot1, failed_slot2,
(uint8_t**)blocks, 1);
}
}
int write_res1, write_res2;
off64_t seek_res;
seek_res = lseek64(source[fd1],
offsets[fd1] + start * chunk_size, SEEK_SET);
if (seek_res < 0) {
fprintf(stderr, "lseek failed for failed_disk1\n");
return -1;
}
write_res1 = write(source[fd1], blocks[failed_slot1], chunk_size);
seek_res = lseek64(source[fd2],
offsets[fd2] + start * chunk_size, SEEK_SET);
if (seek_res < 0) {
fprintf(stderr, "lseek failed for failed_disk2\n");
return -1;
}
write_res2 = write(source[fd2], blocks[failed_slot2], chunk_size);
if (write_res1 != chunk_size || write_res2 != chunk_size) {
fprintf(stderr, "Failed to write a complete chunk.\n");
return -2;
}
return 0;
}
int check_stripes(struct mdinfo *info, int *source, unsigned long long *offsets,
int raid_disks, int chunk_size, int level, int layout,
unsigned long long start, unsigned long long length, char *name[],
enum repair repair, int failed_disk1, int failed_disk2)
{
/* read the data and p and q blocks, and check we got them right */
int data_disks = raid_disks - 2;
int syndrome_disks = data_disks + is_ddf(layout) * 2;
char *stripe_buf;
/* stripes[] is indexed by raid_disk and holds chunks from each device */
char **stripes = xmalloc(raid_disks * sizeof(char*));
/* blocks[] is indexed by syndrome number and points to either one of the
* chunks from 'stripes[]', or to a chunk of zeros. -1 and -2 are
* P and Q */
char **blocks = xmalloc((syndrome_disks + 2) * sizeof(char*));
/* blocks_page[] is a temporary index to just one page of the chunks
* that blocks[] points to. */
char **blocks_page = xmalloc((syndrome_disks + 2) * sizeof(char*));
/* block_index_for_slot[] provides the reverse mapping from blocks to stripes.
* The index is a syndrome position, the content is a raid_disk number.
* indicies -1 and -2 work, and are P and Q disks */
int *block_index_for_slot = xmalloc((syndrome_disks+2) * sizeof(int));
/* 'p' and 'q' contain calcualted P and Q, to be compared with
* blocks[-1] and blocks[-2];
*/
uint8_t *p = xmalloc(chunk_size);
uint8_t *q = xmalloc(chunk_size);
char *zero = xmalloc(chunk_size);
int *results = xmalloc(chunk_size * sizeof(int));
sighandler_t *sig = xmalloc(3 * sizeof(sighandler_t));
int i, j;
int diskP, diskQ, diskD;
int err = 0;
extern int tables_ready;
if (!tables_ready)
make_tables();
if (posix_memalign((void**)&stripe_buf, 4096, raid_disks * chunk_size) != 0)
exit(4);
block_index_for_slot += 2;
blocks += 2;
blocks_page += 2;
memset(zero, 0, chunk_size);
for ( i = 0 ; i < raid_disks ; i++)
stripes[i] = stripe_buf + i * chunk_size;
while (length > 0) {
/* The syndrome number of the broken disk is recorded
* in 'disk[]' which allows a different broken disk for
* each page.
*/
int disk[chunk_size >> CHECK_PAGE_BITS];
err = lock_stripe(info, start, chunk_size, data_disks, sig);
if(err != 0) {
if (err != 2)
unlock_all_stripes(info, sig);
goto exitCheck;
}
for (i = 0 ; i < raid_disks ; i++) {
off64_t seek_res = lseek64(source[i], offsets[i] + start * chunk_size,
SEEK_SET);
if (seek_res < 0) {
fprintf(stderr, "lseek to source %d failed\n", i);
unlock_all_stripes(info, sig);
err = -1;
goto exitCheck;
}
int read_res = read(source[i], stripes[i], chunk_size);
if (read_res < chunk_size) {
fprintf(stderr, "Failed to read complete chunk disk %d, aborting\n", i);
unlock_all_stripes(info, sig);
err = -1;
goto exitCheck;
}
}
diskP = geo_map(-1, start, raid_disks, level, layout);
block_index_for_slot[-1] = diskP;
blocks[-1] = stripes[diskP];
diskQ = geo_map(-2, start, raid_disks, level, layout);
block_index_for_slot[-2] = diskQ;
blocks[-2] = stripes[diskQ];
if (!is_ddf(layout)) {
/* The syndrome-order of disks starts immediately after 'Q',
* but skips P */
diskD = diskQ;
for (i = 0 ; i < data_disks ; i++) {
diskD = diskD + 1;
if (diskD >= raid_disks)
diskD = 0;
if (diskD == diskP)
diskD += 1;
if (diskD >= raid_disks)
diskD = 0;
blocks[i] = stripes[diskD];
block_index_for_slot[i] = diskD;
}
} else {
/* The syndrome-order exactly follows raid-disk
* numbers, with ZERO in place of P and Q
*/
for (i = 0 ; i < raid_disks; i++) {
if (i == diskP || i == diskQ) {
blocks[i] = zero;
block_index_for_slot[i] = -1;
} else {
blocks[i] = stripes[i];
block_index_for_slot[i] = i;
}
}
}
qsyndrome(p, q, (uint8_t**)blocks, syndrome_disks, chunk_size);
raid6_collect(chunk_size, p, q, stripes[diskP], stripes[diskQ], results);
raid6_stats(disk, results, raid_disks, chunk_size);
for(j = 0; j < (chunk_size >> CHECK_PAGE_BITS); j++) {
int role = disk[j];
if (role >= -2) {
int slot = block_index_for_slot[role];
if (slot >= 0)
printf("Error detected at stripe %llu, page %d: possible failed disk slot %d: %d --> %s\n",
start, j, role, slot, name[slot]);
else
printf("Error detected at stripe %llu, page %d: failed slot %d should be zeros\n",
start, j, role);
} else if(disk[j] == -65535) {
printf("Error detected at stripe %llu, page %d: disk slot unknown\n", start, j);
}
}
if(repair == AUTO_REPAIR) {
err = autorepair(disk, start, chunk_size,
name, raid_disks, syndrome_disks, blocks_page,
blocks, p, block_index_for_slot,
source, offsets);
if(err != 0) {
unlock_all_stripes(info, sig);
goto exitCheck;
}
}
if(repair == MANUAL_REPAIR) {
int failed_slot1 = -1, failed_slot2 = -1;
for (i = -2; i < syndrome_disks; i++) {
if (block_index_for_slot[i] == failed_disk1)
failed_slot1 = i;
if (block_index_for_slot[i] == failed_disk2)
failed_slot2 = i;
}
err = manual_repair(chunk_size, syndrome_disks,
failed_slot1, failed_slot2,
start, block_index_for_slot,
name, stripes, blocks, p,
source, offsets);
if(err == -1) {
unlock_all_stripes(info, sig);
goto exitCheck;
}
}
err = unlock_all_stripes(info, sig);
if(err != 0) {
goto exitCheck;
}
length--;
start++;
}
exitCheck:
free(stripe_buf);
free(stripes);
free(blocks-2);
free(blocks_page-2);
free(block_index_for_slot-2);
free(p);
free(q);
free(results);
free(sig);
return err;
}
unsigned long long getnum(char *str, char **err)
{
char *e;
unsigned long long rv = strtoull(str, &e, 10);
if (e==str || *e) {
*err = str;
return 0;
}
return rv;
}
int main(int argc, char *argv[])
{
/* md_device start length */
int *fds = NULL;
char *buf = NULL;
char **disk_name = NULL;
unsigned long long *offsets = NULL;
int raid_disks = 0;
int active_disks;
int chunk_size = 0;
int layout = -1;
int level = 6;
enum repair repair = NO_REPAIR;
int failed_disk1 = -1;
int failed_disk2 = -1;
unsigned long long start, length;
int i;
int mdfd;
struct mdinfo *info = NULL, *comp = NULL;
char *err = NULL;
int exit_err = 0;
int close_flag = 0;
char *prg = strrchr(argv[0], '/');
if (prg == NULL)
prg = argv[0];
else
prg++;
if (argc < 4) {
fprintf(stderr, "Usage: %s md_device start_stripe length_stripes [autorepair]\n", prg);
fprintf(stderr, " or: %s md_device repair stripe failed_slot_1 failed_slot_2\n", prg);
exit_err = 1;
goto exitHere;
}
mdfd = open(argv[1], O_RDONLY);
if(mdfd < 0) {
perror(argv[1]);
fprintf(stderr, "%s: cannot open %s\n", prg, argv[1]);
exit_err = 2;
goto exitHere;
}
info = sysfs_read(mdfd, NULL,
GET_LEVEL|
GET_LAYOUT|
GET_DISKS|
GET_STATE |
GET_COMPONENT|
GET_CHUNK|
GET_DEVS|
GET_OFFSET|
GET_SIZE);
if(info == NULL) {
fprintf(stderr, "%s: Error reading sysfs information of %s\n", prg, argv[1]);
exit_err = 9;
goto exitHere;
}
if(info->array.level != level) {
fprintf(stderr, "%s: %s not a RAID-6\n", prg, argv[1]);
exit_err = 3;
goto exitHere;
}
if(info->array.failed_disks > 0) {
fprintf(stderr, "%s: %s degraded array\n", prg, argv[1]);
exit_err = 8;
goto exitHere;
}
printf("layout: %d\n", info->array.layout);
printf("disks: %d\n", info->array.raid_disks);
printf("component size: %llu\n", info->component_size * 512);
printf("total stripes: %llu\n", (info->component_size * 512) / info->array.chunk_size);
printf("chunk size: %d\n", info->array.chunk_size);
printf("\n");
comp = info->devs;
for(i = 0, active_disks = 0; active_disks < info->array.raid_disks; i++) {
printf("disk: %d - offset: %llu - size: %llu - name: %s - slot: %d\n",
i, comp->data_offset * 512, comp->component_size * 512,
map_dev(comp->disk.major, comp->disk.minor, 0),
comp->disk.raid_disk);
if(comp->disk.raid_disk >= 0)
active_disks++;
comp = comp->next;
}
printf("\n");
close(mdfd);
raid_disks = info->array.raid_disks;
chunk_size = info->array.chunk_size;
layout = info->array.layout;
if (strcmp(argv[2], "repair")==0) {
if (argc < 6) {
fprintf(stderr, "For repair mode, call %s md_device repair stripe failed_slot_1 failed_slot_2\n", prg);
exit_err = 1;
goto exitHere;
}
repair = MANUAL_REPAIR;
start = getnum(argv[3], &err);
length = 1;
failed_disk1 = getnum(argv[4], &err);
failed_disk2 = getnum(argv[5], &err);
if(failed_disk1 >= info->array.raid_disks) {
fprintf(stderr, "%s: failed_slot_1 index is higher than number of devices in raid\n", prg);
exit_err = 4;
goto exitHere;
}
if(failed_disk2 >= info->array.raid_disks) {
fprintf(stderr, "%s: failed_slot_2 index is higher than number of devices in raid\n", prg);
exit_err = 4;
goto exitHere;
}
if(failed_disk1 == failed_disk2) {
fprintf(stderr, "%s: failed_slot_1 and failed_slot_2 are the same\n", prg);
exit_err = 4;
goto exitHere;
}
}
else {
start = getnum(argv[2], &err);
length = getnum(argv[3], &err);
if (argc >= 5 && strcmp(argv[4], "autorepair")==0)
repair = AUTO_REPAIR;
}
if (err) {
fprintf(stderr, "%s: Bad number: %s\n", prg, err);
exit_err = 4;
goto exitHere;
}
if(start > ((info->component_size * 512) / chunk_size)) {
start = (info->component_size * 512) / chunk_size;
fprintf(stderr, "%s: start beyond disks size\n", prg);
}
if((length == 0) ||
((length + start) > ((info->component_size * 512) / chunk_size))) {
length = (info->component_size * 512) / chunk_size - start;
}
disk_name = xmalloc(raid_disks * sizeof(*disk_name));
fds = xmalloc(raid_disks * sizeof(*fds));
offsets = xcalloc(raid_disks, sizeof(*offsets));
buf = xmalloc(raid_disks * chunk_size);
for(i=0; i<raid_disks; i++) {
fds[i] = -1;
}
close_flag = 1;
comp = info->devs;
for (i=0, active_disks=0; active_disks<raid_disks; i++) {
int disk_slot = comp->disk.raid_disk;
if(disk_slot >= 0) {
disk_name[disk_slot] = map_dev(comp->disk.major, comp->disk.minor, 0);
offsets[disk_slot] = comp->data_offset * 512;
fds[disk_slot] = open(disk_name[disk_slot], O_RDWR | O_DIRECT);
if (fds[disk_slot] < 0) {
perror(disk_name[disk_slot]);
fprintf(stderr,"%s: cannot open %s\n", prg, disk_name[disk_slot]);
exit_err = 6;
goto exitHere;
}
active_disks++;
}
comp = comp->next;
}
int rv = check_stripes(info, fds, offsets,
raid_disks, chunk_size, level, layout,
start, length, disk_name, repair, failed_disk1, failed_disk2);
if (rv != 0) {
fprintf(stderr, "%s: check_stripes returned %d\n", prg, rv);
exit_err = 7;
goto exitHere;
}
exitHere:
if (close_flag)
for(i = 0; i < raid_disks; i++)
close(fds[i]);
free(disk_name);
free(fds);
free(offsets);
free(buf);
exit(exit_err);
}