-
Notifications
You must be signed in to change notification settings - Fork 2
/
run_glue.py
executable file
·823 lines (732 loc) · 34.8 KB
/
run_glue.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
"""
Finetuning the library models for sequence classification on GLUE.
Ex. training usage:
python run_glue.py /fly/task_configs/monarch_roberta_glue/cola.json --wandb=False
Ex. Hyperparameter tuning usage:
python run_glue.py /fly/task_configs/monarch_roberta_glue/cola.json --do_tune=True
"""
def warn(*args, **kwargs):
pass
import warnings
warnings.warn = warn
import os
import sys
from contextlib import nullcontext
import pynvml
def select_gpu(exclude=[]):
"""
Select the GPU with maximum free memory
"""
pynvml.nvmlInit()
num_gpus = pynvml.nvmlDeviceGetCount()
max_mem = 0
max_gpu = 0
if num_gpus == 0:
raise Exception("No GPU found")
for i in range(num_gpus):
handle = pynvml.nvmlDeviceGetHandleByIndex(i)
mem_info = pynvml.nvmlDeviceGetMemoryInfo(handle)
free_mem = mem_info.free
if free_mem > max_mem and i not in exclude:
max_mem = free_mem
max_gpu = i
pynvml.nvmlShutdown()
print("Selected GPU:", max_gpu, "with max memory %.2f GB" % (max_mem / 1024**3))
return max_gpu
############################# Move all torch libs down here #############################
# A bit ugly...but this only works before all torch libs are imported
if not "--do_tune=True" in sys.argv:
os.environ["CUDA_VISIBLE_DEVICES"] = str(select_gpu())
import copy
import json
import logging
import random
import time
from functools import partial
import numpy as np
import torch
from datasets import load_dataset, load_metric
from ray import tune
from ray.tune import CLIReporter
from ray.tune.schedulers import ASHAScheduler
from torch import profiler
from transformers import (
AutoConfig,
AutoModel,
AutoTokenizer,
DataCollatorWithPadding,
DebertaForSequenceClassification,
EvalPrediction,
HfArgumentParser,
PretrainedConfig,
TrainingArguments,
default_data_collator,
set_seed,
)
from transformers.trainer_utils import get_last_checkpoint
from transformers.utils import check_min_version
from transformers.utils.versions import require_version
from src.hf_setup import (
DataTrainingArguments,
ModelArguments,
setup_logging_ckpt,
task_to_keys,
)
from src.models.modeling_roberta import RobertaForSequenceClassification
from train_utils import *
# Ensure reproducibility given the same hardware
torch.use_deterministic_algorithms(True)
torch.backends.cudnn.deterministic = True
model = None # init later
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
check_min_version("4.21.0.dev0")
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
best_hyperparams: dict = None
task_to_submit = {
"cola": "CoLA",
"mnli": "MNLI-m",
"mnli-mm": "MNLI-mm",
"mrpc": "MRPC",
"qnli": "QNLI",
"qqp": "QQP",
"rte": "RTE",
"sst2": "SST-2",
"stsb": "STS-B",
"wnli": "WNLI",
}
task_to_metric = {
"cola": "eval_matthews_correlation",
"mnli": "eval_accuracy",
"mrpc": "eval_accuracy",
"qnli": "eval_accuracy",
"qqp": "eval_accuracy",
"rte": "eval_accuracy",
"sst2": "eval_accuracy",
"stsb": "eval_pearson",
"wnli": "eval_accuracy",
}
logger = logging.getLogger(__name__)
def override_dict(dict_new, dict_old):
if dict_new is not None:
for k in dict_old.keys():
if k in dict_new.keys() and dict_new[k] != dict_old[k]:
print("Overriding the {} in best HP to {}".format(k, dict_new[k]))
dict_old[k] = dict_new[k]
def main(config: dict = None):
############################## Command line args ##############################
args = parse_args()
# peft_config = json.load(open(PEFT_ROBERTA_PATH, "r")) # load monarch config
parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_json_file(
json_file=os.path.abspath(args.config_path), allow_extra_keys=True
)
# EDIT
assert (
not (args.monarch and args.boft) and not (args.lora and args.monarch) and not (args.lora and args.boft)
), "Can only use one adapter at a time"
print(f"base model: {model_args.model_name_or_path}")
if "deberta" in model_args.model_name_or_path:
if args.monarch: # NOTE monarch will take precendence over
peft_config = json.load(open(PEFT_DEBERTA_PATH, "r")) # load monarch config
elif args.boft:
peft_config = json.load(open(PEFT_DEBERTA_BOFT_PATH, "r"))
else: # default roberta
if args.monarch:
peft_config = json.load(open(PEFT_ROBERTA_PATH, "r")) # load monarch config
elif args.boft:
peft_config = json.load(open(PEFT_ROBERTA_BOFT_PATH, "r"))
elif args.lora:
peft_config = json.load(open(PEFT_ROBERTA_LORA_PATH, "r"))
# NOTE: Extra args can override all training configs (best HP, peft_config, etc.)
extra_args = override_config([model_args, data_args, training_args, peft_config], sys.argv[2:])
args.boft = args.boft
do_tune = args.do_tune
use_wandb = args.wandb
adapter = args.adapter
tune_unit = args.tune_unit
# For grouping runs in wandb
group = args.group
project = args.project
full_group = args.full_group
# Adapter settings
if peft_config.get("q_v"):
peft_config["target_modules"] = (
["query_proj", "value_proj"] if "deberta" in model_args.model_name_or_path else ["query", "value"]
)
if peft_config.get("mlp"):
peft_config["target_modules"] += ["dense"]
training_args.disable_tqdm = args.disable_tqdm
# Do NOT use loss as saving metric, maximize eval metric instead
training_args.metric_for_best_model = task_to_metric[data_args.task_name]
training_args.greater_is_better = True
training_args.optim = "adamw_torch" # forward compatibility
# Set up wandb
task_name = data_args.task_name if do_tune else "" # Put all tasks in one group in standalone training
os.environ["WANDB_RUN_GROUP"] = (
get_run_group(task_name, do_tune, group, args.time, args.notes) if not full_group else full_group
)
# Upload host machine to wandb for locating ckpts
if os.path.exists("hostname.txt"):
hostname = open("hostname.txt", "r").readline().strip()
os.environ["WANDB_HOST"] = hostname
elif use_wandb:
logging.warning("Try adding a hostname.txt (hostname > hostname.txt), or wandb will use random id from docker.")
if full_group:
group = ("_").join(
full_group.split("_")[1:-1] if not full_group.startswith("tune") else full_group.split("_")[2:-1]
)
if do_tune:
assert tune_unit in ["time", "eval_iter"], "max_t (resources) must be either time or eval iteration"
print("Tuning hyperparameters for", data_args.task_name)
else:
print("Full training for", data_args.task_name)
# Wandb config
if use_wandb:
training_args.run_name = "glue_" + data_args.task_name # wandb run name
os.environ["WANDB_PROJECT"] = "monarch_glue"
os.environ["WANDB_PROJECT"] = project if project else os.environ["WANDB_PROJECT"] # Override if provided
# group runs within the same hour
print("Wandb project: ", os.environ["WANDB_PROJECT"])
print("Wandb run group: ", os.environ["WANDB_RUN_GROUP"])
else:
os.environ["WANDB_RUN_GROUP"] = os.environ["WANDB_PROJECT"] = "offline"
print("Disabling wandb")
os.environ["WANDB_MODE"] = "disabled"
task_output_dir = os.path.join(training_args.output_dir, data_args.task_name)
training_args.output_dir = (
os.path.join(task_output_dir, group) if group else os.path.join(task_output_dir, "default")
)
os.makedirs(training_args.output_dir, exist_ok=True)
# For resuming HPO
if args.resume or args.load_group:
path = os.path.join(training_args.output_dir, "full_group.txt")
if os.path.exists(path):
full_group = os.environ["WANDB_RUN_GROUP"] = open(path, "r").readline().strip()
print("Loading wandb run group: ", os.environ["WANDB_RUN_GROUP"])
else:
logging.warning(
"No full_group.txt found in the output dir. Won't resume HPO/put this training run in the same wandb group."
)
# Logging and checkpointing
last_checkpoint = setup_logging_ckpt(training_args, logger, do_tune)
# Get the datasets: you can either provide your own CSV/JSON training and evaluation files (see below)
# or specify a GLUE benchmark task (the dataset will be downloaded automatically from the datasets Hub).
#
# For CSV/JSON files, this script will use as labels the column called 'label' and as pair of sentences the
# sentences in columns called 'sentence1' and 'sentence2' if such column exists or the first two columns not named
# label if at least two columns are provided.
#
# If the CSVs/JSONs contain only one non-label column, the script does single sentence classification on this
# single column. You can easily tweak this behavior (see below)
#
# In distributed training, the load_dataset function guarantee that only one local process can concurrently
# download the dataset.
if data_args.task_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
"glue",
data_args.task_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
elif data_args.dataset_name is not None:
# Downloading and loading a dataset from the hub.
raw_datasets = load_dataset(
data_args.dataset_name,
data_args.dataset_config_name,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
# Loading a dataset from your local files.
# CSV/JSON training and evaluation files are needed.
data_files = {"train": data_args.train_file, "validation": data_args.validation_file}
# Get the test dataset: you can provide your own CSV/JSON test file (see below)
# when you use `do_predict` without specifying a GLUE benchmark task.
if training_args.do_predict:
if data_args.test_file is not None:
train_extension = data_args.train_file.split(".")[-1]
test_extension = data_args.test_file.split(".")[-1]
assert (
test_extension == train_extension
), "`test_file` should have the same extension (csv or json) as `train_file`."
data_files["test"] = data_args.test_file
else:
raise ValueError("Need either a GLUE task or a test file for `do_predict`.")
for key in data_files.keys():
logger.info(f"load a local file for {key}: {data_files[key]}")
if data_args.train_file.endswith(".csv"):
# Loading a dataset from local csv files
raw_datasets = load_dataset(
"csv",
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
else:
# Loading a dataset from local json files
raw_datasets = load_dataset(
"json",
data_files=data_files,
cache_dir=model_args.cache_dir,
use_auth_token=True if model_args.use_auth_token else None,
)
# See more about loading any type of standard or custom dataset at
# https://huggingface.co/docs/datasets/loading_datasets.html.
# Labels
if data_args.task_name is not None:
is_regression = data_args.task_name == "stsb"
if not is_regression:
labels_path = "/fly/task_configs/labels.json"
# labels_path = "/workspace/private/sparse_matrix_fine_tuning/task_configs/labels.json"
label_list = json.load(open(labels_path, "r"))[data_args.task_name]
# label_list = raw_datasets["train"].features["label"].names
num_labels = len(label_list)
else:
num_labels = 1
else:
# Trying to have good defaults here, don't hesitate to tweak to your needs.
is_regression = raw_datasets["train"].features["label"].dtype in ["float32", "float64"]
if is_regression:
num_labels = 1
else:
# A useful fast method:
# https://huggingface.co/docs/datasets/package_reference/main_classes.html#datasets.Dataset.unique
label_list = raw_datasets["train"].unique("label")
label_list.sort() # Let's sort it for determinism
num_labels = len(label_list)
# Load pretrained model and tokenizer
# In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
# download model & vocab.
config = AutoConfig.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path,
num_labels=num_labels,
finetuning_task=data_args.task_name,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
cache_dir=model_args.cache_dir,
use_fast=model_args.use_fast_tokenizer,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
)
# helper to init and set hyperparams for Ray Tune search
def model_init(hyperparams: dict = None):
global best_hyperparams, model
set_seed(training_args.seed)
if hyperparams is not None:
best_hyperparams = hyperparams
# model = RobertaForSequenceClassification.from_pretrained(
# pretrained_model_name_or_path=model_args.model_name_or_path,
# config=config,
# cache_dir=model_args.cache_dir,
# revision=model_args.model_revision,
# use_auth_token=True if model_args.use_auth_token else None,
# ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
# )
# EDIT
if model == None:
if "deberta" in model_args.model_name_or_path:
model = DebertaForSequenceClassification(config)
model.deberta = AutoModel.from_pretrained(
model_args.config_name if model_args.config_name else model_args.model_name_or_path
) # hacky loading of backbone pretrained; "microsoft/deberta-v3-base"
else: # Default to roberta
model = RobertaForSequenceClassification.from_pretrained(
pretrained_model_name_or_path=model_args.model_name_or_path,
config=config,
cache_dir=model_args.cache_dir,
revision=model_args.model_revision,
use_auth_token=True if model_args.use_auth_token else None,
ignore_mismatched_sizes=model_args.ignore_mismatched_sizes,
)
if torch.cuda.is_available():
model = model.to("cuda")
# For Hyperparameter search
override_dict(best_hyperparams, peft_config)
if args.monarch:
# model.roberta.init_monarch_layers = partial(init_monarch_layers, model.roberta)
# model.roberta.peft_config = peft_config
# EDIT
if hasattr(model, "roberta"):
model_internal = model.roberta
elif hasattr(model, "deberta"):
model_internal = model.deberta
else:
raise NotImplementedError
# model_internal.init_monarch_layers = partial(init_monarch_layers, model_internal)
# model_internal.peft_config = peft_config
init_monarch(model_internal, peft_config)
elif args.lora:
init_lora(model, peft_config)
print("Using LoRA")
elif args.boft:
peft_config["boft_dropout"] = model_args.oft_dropout
model = init_boft(model, peft_config)
print("Using BOFT")
return model
# Preprocessing the raw_datasets
if data_args.task_name is not None:
sentence1_key, sentence2_key = task_to_keys[data_args.task_name]
else:
# Again, we try to have some nice defaults but don't hesitate to tweak to your use case.
non_label_column_names = [name for name in raw_datasets["train"].column_names if name != "label"]
if "sentence1" in non_label_column_names and "sentence2" in non_label_column_names:
sentence1_key, sentence2_key = "sentence1", "sentence2"
else:
if len(non_label_column_names) >= 2:
sentence1_key, sentence2_key = non_label_column_names[:2]
else:
sentence1_key, sentence2_key = non_label_column_names[0], None
# Padding strategy
if data_args.pad_to_max_length:
padding = "max_length"
else:
# We will pad later, dynamically at batch creation, to the max sequence length in each batch
padding = False
# Some models have set the order of the labels to use, so let's make sure we do use it.
label_to_id = None
if (
config.label2id != PretrainedConfig(num_labels=num_labels).label2id
and data_args.task_name is not None
and not is_regression
):
# Some have all caps in their config, some don't.
label_name_to_id = {k.lower(): v for k, v in config.label2id.items()}
if list(sorted(label_name_to_id.keys())) == list(sorted(label_list)):
label_to_id = {i: int(label_name_to_id[label_list[i]]) for i in range(num_labels)}
else:
logger.warning(
"Your model seems to have been trained with labels, but they don't match the dataset: ",
f"model labels: {list(sorted(label_name_to_id.keys()))}, dataset labels: {list(sorted(label_list))}."
"\nIgnoring the model labels as a result.",
)
elif data_args.task_name is None and not is_regression:
label_to_id = {v: i for i, v in enumerate(label_list)}
if label_to_id is not None:
config.label2id = label_to_id
config.id2label = {id: label for label, id in config.label2id.items()}
elif data_args.task_name is not None and not is_regression:
config.label2id = {l: i for i, l in enumerate(label_list)}
config.id2label = {id: label for label, id in config.label2id.items()}
if data_args.max_seq_length > tokenizer.model_max_length:
logger.warning(
f"The max_seq_length passed ({data_args.max_seq_length}) is larger than the maximum length for the"
f"model ({tokenizer.model_max_length}). Using max_seq_length={tokenizer.model_max_length}."
)
max_seq_length = min(data_args.max_seq_length, tokenizer.model_max_length)
def preprocess_function(examples):
# Tokenize the texts
args = (
(examples[sentence1_key],) if sentence2_key is None else (examples[sentence1_key], examples[sentence2_key])
)
result = tokenizer(*args, padding=padding, max_length=max_seq_length, truncation=True)
# Map labels to IDs (not necessary for GLUE tasks)
if label_to_id is not None and "label" in examples:
result["label"] = [(label_to_id[l] if l != -1 else -1) for l in examples["label"]]
return result
# Get mapped datasets
with training_args.main_process_first(desc="dataset map pre-processing"):
raw_datasets = raw_datasets.map(
preprocess_function,
batched=True,
load_from_cache_file=not data_args.overwrite_cache,
desc="Running tokenizer on dataset",
)
if training_args.do_train or args.do_tune:
if "train" not in raw_datasets:
raise ValueError("--do_train requires a train dataset")
train_dataset = raw_datasets["train"]
if data_args.max_train_samples is not None:
max_train_samples = min(len(train_dataset), data_args.max_train_samples)
train_dataset = train_dataset.select(range(max_train_samples))
if training_args.do_eval or args.do_tune:
if "validation" not in raw_datasets and "validation_matched" not in raw_datasets:
raise ValueError("--do_eval requires a validation dataset")
eval_dataset = raw_datasets["validation_matched" if data_args.task_name == "mnli" else "validation"]
if data_args.max_eval_samples is not None:
max_eval_samples = min(len(eval_dataset), data_args.max_eval_samples)
eval_dataset = eval_dataset.select(range(max_eval_samples))
if training_args.do_predict or data_args.task_name is not None or data_args.test_file is not None:
if "test" not in raw_datasets and "test_matched" not in raw_datasets:
raise ValueError("--do_predict requires a test dataset")
predict_dataset = raw_datasets["test_matched" if data_args.task_name == "mnli" else "test"]
if data_args.max_predict_samples is not None:
max_predict_samples = min(len(predict_dataset), data_args.max_predict_samples)
predict_dataset = predict_dataset.select(range(max_predict_samples))
# Log a few random samples from the training set:
if training_args.do_train:
for index in random.sample(range(len(train_dataset)), 3):
logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
# Get the metric function
if data_args.task_name is not None:
metric = load_metric("glue", data_args.task_name)
else:
metric = load_metric("accuracy")
# You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
# predictions and label_ids field) and has to return a dictionary string to float.
def compute_metrics(p: EvalPrediction):
preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
preds = np.squeeze(preds) if is_regression else np.argmax(preds, axis=1)
if data_args.task_name is not None:
result = metric.compute(predictions=preds, references=p.label_ids)
if len(result) > 1:
result["combined_score"] = np.mean(list(result.values())).item()
print("result: ", result)
return result
elif is_regression:
return {"mse": ((preds - p.label_ids) ** 2).mean().item()}
else:
return {"accuracy": (preds == p.label_ids).astype(np.float32).mean().item()}
# Data collator will default to DataCollatorWithPadding when the tokenizer is passed to Trainer, so we change it if
# we already did the padding.
if data_args.pad_to_max_length:
data_collator = default_data_collator
elif training_args.fp16:
data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
else:
data_collator = None
# NOTE: 60K steps for QNLI, 80K for SST-2, 50K for MNLI
if data_args.task_name == "qqp":
training_args.eval_steps = 1250 # 110K total steps for QQP
training_args.save_steps = 1250
training_args.per_device_eval_batch_size = 64
# Initialize Trainer
has_ckpt = any([file.startswith("checkpoint") for file in os.listdir(training_args.output_dir)])
if training_args.resume_from_checkpoint is not None:
training_args.resume_from_checkpoint &= has_ckpt
if not adapter:
peft_config["adapter"] = False # Will not use merging adapter style
############################ Ray Tune Hyperparameter optimization ############################
if do_tune:
# Save full tune group name for resuming
with open(os.path.join(training_args.output_dir, "full_group.txt"), "w") as f:
f.write(os.environ["WANDB_RUN_GROUP"])
# clone args
# Avoid flooding the disk during HPO
tune_args = copy.deepcopy(training_args)
tune_args.save_total_limit = 0
tune_args.load_best_model_at_end = False
tune_args.save_strategy = "no"
trainer = MyAwesomeTrainer(
model_init=model_init,
args=tune_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator,
large_lr=peft_config["large_lr"],
new_lr=peft_config["new_lr"],
use_scaler=peft_config["scaler"],
)
# PEFT monarch search space
if args.monarch:
param_space = {
# "nblocks": tune.choice(['sqrt(n)', 4]),
"seed": training_args.seed,
"learning_rate": tune.quniform(1e-4, 6.6e-4, 2e-5),
"per_device_train_batch_size": tune.choice([16, 32]), # In Monarch-Mixer they mixed 32 and 16
"weight_decay": training_args.weight_decay,
"lr_scheduler_type": "cosine", # mostly linear underperforms
"blk_r": peft_config["blk_r"],
"nblocks": peft_config["nblocks"],
}
n_trials = args.n_trials
if args.tune_blk_config:
# TODO: Search a larger space, and fail the runs over the budget (~1.2M param)
# Do NAS
param_space["blk_r"] = tune.choice([1, 2, 4, 8])
param_space["blk_sz"] = tune.choice([64, 128, 512])
param_space["lr_scheduler_type"] = "cosine"
n_trials += 10
elif args.boft:
param_space = {
# "nblocks": tune.choice(['sqrt(n)', 4]),
"seed": training_args.seed,
"learning_rate": tune.quniform(8e-5, 8e-4, 4e-5),
# "blk_r": peft_config["blk_r"],
# "nblocks": peft_config["nblocks"],
}
n_trials = 15
# NO BLOCK TUNING (YET)
else:
# Vanilla finetuning
param_space = {
"learning_rate": tune.grid_search([1e-5, 2e-5, 3e-5]),
"per_device_train_batch_size": tune.grid_search([16, 32]),
"weight_decay": tune.choice([0.1]),
"lr_scheduler_type": tune.grid_search(["cosine"]),
}
n_trials = 1 # grid search will try all combinations by default
# Set up scheduler and reporter etc.
mode = "max"
max_t = 40 * 60 if tune_unit == "time" else 15 # mins or eval iterations
if data_args.task_name == "mrpc":
max_t = 30 * 60 if tune_unit == "time" else 12
elif data_args.task_name == "stsb":
max_t = 25 * 60 if tune_unit == "time" else 11
elif data_args.task_name == "cola":
max_t = 35 * 60 if tune_unit == "time" else 14
grade_period = 4 * 60 if tune_unit == "time" else 3
time_attr = "time_total_s" if tune_unit == "time" else "training_iteration"
scheduler = ASHAScheduler(
time_attr=time_attr,
max_t=max_t,
metric=task_to_metric[data_args.task_name],
mode=mode,
grace_period=grade_period,
)
reporter = CLIReporter(
parameter_columns=["learning_rate", "per_device_train_batch_size", "weight_decay"],
metric_columns=["train_loss", "eval_loss", task_to_metric[data_args.task_name], "training_iteration"],
max_progress_rows=9,
max_report_frequency=9,
)
# Do hyperparam optimization with Ray Tune
best_run = trainer.hyperparameter_search(
hp_space=lambda _: param_space,
backend="ray",
n_trials=n_trials, # under the hood it calls ray.tune.run(num_samples=n_trials, ...)
scheduler=scheduler,
# keep_checkpoints_num=None,
checkpoint_score_attr="max-" + task_to_metric[data_args.task_name], # rank in decreasing order
progress_reporter=reporter,
resources_per_trial={"cpu": 1, "gpu": args.gpus_per_trial if not args.boft else 1},
name=os.environ["WANDB_RUN_GROUP"],
max_failures=999, # tolerate OOM
direction="maximize" if mode == "max" else "minimize",
compute_objective=partial(get_hpo_metric, task_to_metric[data_args.task_name]),
resume=args.resume,
)
best_hp = best_run.hyperparameters
# Save the best HP for full training
print("Best hyperparameters: ", best_hp)
# Save in the run dir
cur_tune_path = os.path.join(training_args.output_dir, "best_hyperparams.json")
json.dump(best_hp, open(cur_tune_path, "w"))
if args.as_base_hp or group == "":
json.dump(best_hp, open(os.path.join(task_output_dir, "best_hyperparams.json"), "w"))
############################## Full training ##############################
# load best hyperparams for the group
best_param_path = os.path.join(training_args.output_dir, "best_hyperparams.json")
base_param_path = os.path.join(task_output_dir, "best_hyperparams.json")
if not os.path.exists(best_param_path):
logging.warning(
"No hyperparams for this group found. Using best HP for this tasks' default config.\
This may be an unintended typo. (Check group name carefully)"
)
best_param_path = base_param_path
if os.path.exists(best_param_path):
global best_hyperparams
best_hyperparams = json.load(open(best_param_path, "r"))
print(f"Loading best hyperparams from {best_param_path}: ", best_hyperparams)
override_config([best_hyperparams], sys.argv[2:])
override_config([model_args, data_args, training_args], best_hyperparams)
else:
best_hyperparams = None
logging.warning("No best hyperparams from HPO found. Using LoRA HPs.")
trainer = MyAwesomeTrainer(
model_init=model_init,
args=training_args,
train_dataset=train_dataset if training_args.do_train else None,
eval_dataset=eval_dataset if training_args.do_eval else None,
compute_metrics=compute_metrics,
tokenizer=tokenizer,
data_collator=data_collator,
large_lr=peft_config.get("large_lr", False),
new_lr=peft_config.get("new_lr", 1e-4),
use_scaler=peft_config.get("scaler", False),
)
# # Training
if training_args.do_train and not do_tune:
checkpoint = None
last_checkpoint, _ = get_last_checkpoint(training_args.output_dir)
if last_checkpoint is not None and args.resume:
checkpoint = last_checkpoint
if args.profile:
ctx = profiler.profile(
schedule=profiler.schedule(wait=1, warmup=3, active=1, repeat=1),
on_trace_ready=profiler.tensorboard_trace_handler(
"./roberta_profile" + "_" + time.strftime("%Y%m%d-%H%M%S")
),
record_shapes=True,
profile_memory=True,
with_stack=True,
)
trainer.add_callback(ProfCallback(prof=ctx))
else:
ctx = nullcontext()
with ctx:
train_result = trainer.train(resume_from_checkpoint=checkpoint)
metrics = train_result.metrics
max_train_samples = (
data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
)
metrics["train_samples"] = min(max_train_samples, len(train_dataset))
trainer.save_model()
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
wandb.run.config.update(peft_config)
# Evaluation
if training_args.do_eval and not do_tune:
logger.info("*** Evaluate ***")
if not training_args.do_train:
ckpt, _ = get_last_checkpoint(training_args.output_dir)
last_checkpoint = os.path.join(ckpt, "pytorch_model.bin")
else:
trainer._load_best_model()
override_dict(best_hyperparams, peft_config)
# Loop to handle MNLI double evaluation (matched, mis-matched)
tasks = [data_args.task_name]
eval_datasets = [eval_dataset]
if data_args.task_name == "mnli":
tasks.append("mnli-mm")
eval_datasets.append(raw_datasets["validation_mismatched"])
combined = {}
for eval_dataset, task in zip(eval_datasets, tasks):
metrics = trainer.evaluate(eval_dataset=eval_dataset)
max_eval_samples = (
data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
)
metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
if task == "mnli-mm":
metrics = {k + "_mm": v for k, v in metrics.items()}
if task is not None and "mnli" in task:
combined.update(metrics)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", combined if task is not None and "mnli" in task else metrics)
if training_args.do_predict:
logger.info("*** Predict ***")
# Loop to handle MNLI double evaluation (matched, mis-matched)
tasks = [data_args.task_name]
predict_datasets = [predict_dataset]
if data_args.task_name == "mnli":
tasks.append("mnli-mm")
predict_datasets.append(raw_datasets["test_mismatched"])
t1 = time.time()
for predict_dataset, task in zip(predict_datasets, tasks):
# Removing the `label` columns because it contains -1 and Trainer won't like that.
predict_dataset = predict_dataset.remove_columns("label")
predictions = trainer.predict(predict_dataset, metric_key_prefix="predict").predictions
predictions = np.squeeze(predictions) if is_regression else np.argmax(predictions, axis=1)
output_predict_file = os.path.join(task_output_dir, f"{task_to_submit[task]}.tsv")
if trainer.is_world_process_zero():
with open(output_predict_file, "w") as writer:
logger.info(f"***** Predict results {task} *****")
writer.write("index\tprediction\n")
for index, item in enumerate(predictions):
if is_regression:
writer.write(f"{index}\t{item:3.3f}\n")
else:
item = label_list[item]
writer.write(f"{index}\t{item}\n")
print("Inferece time on test set: ", time.time() - t1)
print(f"Used best hyperparameters from {best_param_path}: ", best_hyperparams)
print("peft_config: ", peft_config)
if __name__ == "__main__":
main()