-
Notifications
You must be signed in to change notification settings - Fork 3
/
Loop_sim.py
401 lines (331 loc) · 16.9 KB
/
Loop_sim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
# We separated parts of the Original SimulationPipeline.py
# It's cause we don't really want to change SimulationPiepline.py too much.
# In this file, we define the Parameter Dictionary
# As well as set up the looping.
# For now we do the looping thorugh pipeline instead of through the PBS array as I don't get it.
# First Import the packages.
import numpy as np
import pandas as pd
import pylab
import matplotlib.pyplot as plt
from scipy import stats
import inspect
import os
import csv
import time
import sys
from tvb.simulator.lab import *
from tvb.simulator.plot.tools import *
# Input Simulation Pipeline
from SimulationPipeline import *
#from useful_fns import *
################################################################################################################################
# These are Default Values for ParamsDict.
# Empty dict
ParamsDict = { }
# Name of import file/zip - Which contains connectivity data.
ParamsDict["name"] = "MouseCortex"
# Calculate FC-FC for Mouse?
ParamsDict["FCFC"] = True
# Export Simulation Files?
ParamsDict["ExportSim"] = True
# Monitors or not? (Aka BOLD or not?)
ParamsDict["BOLD"] = False
# Change to Binary Connectome? (If True, will change the connectome into binary)
ParamsDict["BINARY"] = True
# Snip is the the number of elements you wish to snip at the start to remove the initial condition effects.
ParamsDict["Snip"] = 10
# Note, if BOLD = False, Snip gets multiplied by 100, later in the SimulationPipeline code. Not the actual dictionary element though.
# Set the Random State/Seed for the Stochastic Integrator:
ParamsDict["RandState"] = 118
# Remove ith indexed region (7 corresponds to Frontal Pole Cerebral Cortex) - Give it a list if removing multiple regions. Empty list removes nothing.
ParamsDict["REMOVE"] = [7]
# Set Simulation Length:
ParamsDict["Simul_length"] = 1.2e5
# Set Linear Coupling Constant:
ParamsDict["G"] = np.array([0.47])
# Set integrator time step dt.
ParamsDict["dt"] = 0.1
# Set Additive Noise strength
ParamsDict["noise"] = np.array([0.000013])
# Set Initial Conditions. Comment out if you want TVB to make initial conditions for you. Init_Cons CANT be in the Dict in this case.
#ParamsDict["Init_Cons"] = initial_conditions=0.25 + numpy.zeros((37*37,2,37,1))
# Must be of form:
# initial_conditions=0.5 + numpy.zeros((con.number_of_regions*con.number_of_regions,2,con.number_of_regions,1))
# Set Wilson Cowan Model Parameters - Limit Cycle Cut
ParamsDict["MODEL_c_ee"] = np.array([11.0])
ParamsDict["MODEL_c_ei"] = np.array([10.0])
ParamsDict["MODEL_c_ie"] = np.array([10.0])
ParamsDict["MODEL_c_ii"] = np.array([1.0])
# Model is now defined within SimulationPipeline.py
# However if you adjusting parameters other than these Coupling Parameters, then you need to redefine the model in this file per run.
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.0]),a_i=numpy.array([1.0]),b_e=numpy.array([1.5]),b_i=numpy.array([2.8]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([65.0]))
# Params Dict tag (extra note tags for the name - Example to denote what's being changed/looped.)
ParamsDict["tag"] = ""
################################################################################################################################
# i is PBS_ARRAY_INDEX - Allows for creation of multiple jobs
I = int(sys.argv[1])
ParamsDict["Simul_length"] = 1.2e5
#ParamsDict["Snip"] = 100 # Gets multiplied by 100 so this is 1 e4 (or 1%)
# Obtain Het Data
df = pd.read_csv("CortexDensitiesAlter.csv",delimiter=",")
E_pop = df.excitatory.values
I_pop = df.inhibitory.values
E_mean = np.mean(E_pop)
I_mean = np.mean(I_pop)
# E_normalised is (when excluding region 7) -0.28 to 0.54
E_normalised = (E_pop-E_mean)/E_mean
# I_normalised is (when excluding region 7) -0.45 to 1.44
I_normalised = (I_pop-I_mean)/I_mean
# With Best LCycle 1.2e5 B_e = 1.1
# G = 0.6
# Simulate LCycle Het 1.2 e5 no G sweep and finer sigma.
# LCycle
ParamsDict["MODEL_c_ee"] = np.array([11.0])
ParamsDict["MODEL_c_ei"] = np.array([10.0])
ParamsDict["MODEL_c_ie"] = np.array([10.0])
ParamsDict["MODEL_c_ii"] = np.array([1.0])
ParamsDict["B_e"] = np.array([1.1])
ParamsDict["G"] = np.array([0.6])
# Homogeneous Coupling constants
h_ee = ParamsDict["MODEL_c_ee"]
h_ei = ParamsDict["MODEL_c_ei"]
h_ie = ParamsDict["MODEL_c_ie"]
h_ii = ParamsDict["MODEL_c_ii"]
ParamsDict["Sigma_e"] =I*0.1
sigma_e = ParamsDict["Sigma_e"]
ParamsDict["Sigma_i"] = I*0.1
sigma_i = ParamsDict["Sigma_i"]
# Heterogeneous Coupling Constants (array)
ParamsDict["MODEL_c_ie"] = h_ie * (1 + sigma_e * E_normalised)
ParamsDict["MODEL_c_ee"] = h_ee * (1 + sigma_e * E_normalised)
ParamsDict["MODEL_c_ii"] = h_ii * (1 + sigma_i * I_normalised)
ParamsDict["MODEL_c_ei"] = h_ei * (1 + sigma_i * I_normalised)
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.0]),a_i=numpy.array([1.0]),b_e=ParamsDict["B_e"],b_i=numpy.array([2.8]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([65.0]))
ParamsDict["tag"] = "LCycle_" + str(ParamsDict["G"]) + "_b_e" + str(ParamsDict["B_e"]) + "_sig_e" + str(sigma_e) + "_sig_i" + str(sigma_i)
Simul_Pipeline(ParamsDict=ParamsDict)
# G = 0.65
# Simulate LCycle Het 1.2 e5 no G sweep and finer sigma.
# LCycle
ParamsDict["MODEL_c_ee"] = np.array([11.0])
ParamsDict["MODEL_c_ei"] = np.array([10.0])
ParamsDict["MODEL_c_ie"] = np.array([10.0])
ParamsDict["MODEL_c_ii"] = np.array([1.0])
ParamsDict["B_e"] = np.array([1.1])
ParamsDict["G"] = np.array([0.65])
# Homogeneous Coupling constants
h_ee = ParamsDict["MODEL_c_ee"]
h_ei = ParamsDict["MODEL_c_ei"]
h_ie = ParamsDict["MODEL_c_ie"]
h_ii = ParamsDict["MODEL_c_ii"]
ParamsDict["Sigma_e"] =I*0.1
sigma_e = ParamsDict["Sigma_e"]
ParamsDict["Sigma_i"] = I*0.1
sigma_i = ParamsDict["Sigma_i"]
# Heterogeneous Coupling Constants (array)
ParamsDict["MODEL_c_ie"] = h_ie * (1 + sigma_e * E_normalised)
ParamsDict["MODEL_c_ee"] = h_ee * (1 + sigma_e * E_normalised)
ParamsDict["MODEL_c_ii"] = h_ii * (1 + sigma_i * I_normalised)
ParamsDict["MODEL_c_ei"] = h_ei * (1 + sigma_i * I_normalised)
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.0]),a_i=numpy.array([1.0]),b_e=ParamsDict["B_e"],b_i=numpy.array([2.8]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([65.0]))
ParamsDict["tag"] = "LCycle_" + str(ParamsDict["G"]) + "_b_e" + str(ParamsDict["B_e"]) + "_sig_e" + str(sigma_e) + "_sig_i" + str(sigma_i)
Simul_Pipeline(ParamsDict=ParamsDict)
'''
# B_e: 0 -> 3
for b_e in np.arange(start=0,stop=3,step=0.1):
# LCycle
ParamsDict["MODEL_c_ee"] = np.array([11.0])
ParamsDict["MODEL_c_ei"] = np.array([10.0])
ParamsDict["MODEL_c_ie"] = np.array([10.0])
ParamsDict["MODEL_c_ii"] = np.array([1.0])
ParamsDict["B_e"] = np.array([b_e])
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.0]),a_i=numpy.array([1.0]),b_e=ParamsDict["B_e"],b_i=numpy.array([2.8]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([65.0]))
ParamsDict["tag"] = "LCycle_BOLD_G" + str(ParamsDict["G"]) + "_b_e" + str(ParamsDict["B_e"])
Simul_Pipeline(ParamsDict=ParamsDict)
# B_e goes from 2->5
for b_e in np.arange(start=2,stop=5,step=0.1):
# Fixed Pt
ParamsDict["MODEL_c_ee"] = np.array([12.0])
ParamsDict["MODEL_c_ei"] = np.array([15.0])
ParamsDict["MODEL_c_ie"] = np.array([10.0])
ParamsDict["MODEL_c_ii"] = np.array([8.0])
ParamsDict["B_e"] = np.array([b_e])
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.0]),a_i=numpy.array([1.0]),b_e=ParamsDict["B_e"],b_i=numpy.array([4]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([10.0]))
ParamsDict["tag"] = "FixedPt_BOLD_G" + str(ParamsDict["G"]) + "_b_e" + str(ParamsDict["B_e"])
Simul_Pipeline(ParamsDict=ParamsDict)
#B_e : 3- >5
for b_e in np.arange(start=3,stop=5,step=0.1):
# Hysteresis
ParamsDict["MODEL_c_ee"] = np.array([16.0])
ParamsDict["MODEL_c_ei"] = np.array([12.0])
ParamsDict["MODEL_c_ie"] = np.array([10.0])
ParamsDict["MODEL_c_ii"] = np.array([3.0])
ParamsDict["B_e"] = np.array([b_e])
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.3]),a_i=numpy.array([2.0]),b_e=ParamsDict["B_e"],b_i=numpy.array([3.7]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([10.0]))
ParamsDict["tag"] = "Hysteresis_BOLD_G"+ str(ParamsDict["G"]) + "_b_e" + str(ParamsDict["B_e"])
Simul_Pipeline(ParamsDict=ParamsDict)
'''
'''
# LCycle-RHopf = LCycleCut
ParamsDict["MODEL_c_ee"] = np.array([11.0])
ParamsDict["MODEL_c_ei"] = np.array([10.0])
ParamsDict["MODEL_c_ie"] = np.array([10.0])
ParamsDict["MODEL_c_ii"] = np.array([1.0])
ParamsDict["B_e"] = np.array([0.8])
ParamsDict["G"] = np.array([0.5])
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.0]),a_i=numpy.array([1.0]),b_e=ParamsDict["B_e"],b_i=numpy.array([2.8]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([65.0]))
ParamsDict["tag"] = "LCycleCut_i" + str(i) + "Length_e5"
Simul_Pipeline(ParamsDict=ParamsDict)
'''
'''
# Gradient - Version 2
E_prop = E_pop / (E_pop + I_pop)
I_prop = I_pop / (E_pop + I_pop)
Mean_e_prop = np.mean(E_prop)
Mean_i_prop = np.mean(I_prop)
# -0.1 to 0.08 roughly.
E_prop_norm = (E_prop-Mean_e_prop)/Mean_e_prop
# -0.4 to 0.7
I_prop_norm = (I_prop-Mean_i_prop)/Mean_i_prop
E_normalised = E_prop_norm
I_normalised = I_prop_norm
'''
"""
# Obtain Het Data
df = pd.read_csv("CortexDensitiesAlter.csv",delimiter=",")
E_pop = df.excitatory.values
I_pop = df.inhibitory.values
E_mean = np.mean(E_pop)
I_mean = np.mean(I_pop)
# E_normalised is (when excluding region 7) -0.28 to 0.54
E_normalised = (E_pop-E_mean)/E_mean
# I_normalised is (when excluding region 7) -0.45 to 1.44
I_normalised = (I_pop-I_mean)/I_mean
# Set Wilson Cowan Model Parameters - LCycleH - LCycle Parameters close to Hysteresis Case.
ParamsDict["MODEL_c_ee"] = np.array([16.0])
ParamsDict["MODEL_c_ei"] = np.array([12.0])
ParamsDict["MODEL_c_ie"] = np.array([15.0])
ParamsDict["MODEL_c_ii"] = np.array([3.0])
# Homogeneous Coupling constants
h_ee = ParamsDict["MODEL_c_ee"]
h_ei = ParamsDict["MODEL_c_ei"]
h_ie = ParamsDict["MODEL_c_ie"]
h_ii = ParamsDict["MODEL_c_ii"]
for J in np.arange(6):
ParamsDict["sigma"] =J*0.2
sigma = ParamsDict["sigma"]
# Heterogeneous Coupling Constants (array)
ParamsDict["MODEL_c_ie"] = h_ie * (1 + sigma * E_normalised)
ParamsDict["MODEL_c_ee"] = h_ee * (1 + sigma * E_normalised)
ParamsDict["MODEL_c_ii"] = h_ii * (1 + sigma * I_normalised)
ParamsDict["MODEL_c_ei"] = h_ei * (1 + sigma * I_normalised)
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.3]),a_i=numpy.array([2.0]),b_e=numpy.array([4]),b_i=numpy.array([3.7]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([10.0]))
ParamsDict["tag"] = "LCycleH_G" + str(ParamsDict["G"])
Simul_Pipeline(ParamsDict=ParamsDict)
# Set Wilson Cowan Model Parameters - LCycleHCut - LCycleCut Parameters close to Hysteresis Case, but chopped so hopf bifurcation.
ParamsDict["MODEL_c_ee"] = np.array([16.0])
ParamsDict["MODEL_c_ei"] = np.array([12.0])
ParamsDict["MODEL_c_ie"] = np.array([15.0])
ParamsDict["MODEL_c_ii"] = np.array([3.0])
# Homogeneous Coupling constants
h_ee = ParamsDict["MODEL_c_ee"]
h_ei = ParamsDict["MODEL_c_ei"]
h_ie = ParamsDict["MODEL_c_ie"]
h_ii = ParamsDict["MODEL_c_ii"]
for J in np.arange(6):
ParamsDict["sigma"] =J*0.2
sigma = ParamsDict["sigma"]
# Heterogeneous Coupling Constants (array)
ParamsDict["MODEL_c_ie"] = h_ie * (1 + sigma * E_normalised)
ParamsDict["MODEL_c_ee"] = h_ee * (1 + sigma * E_normalised)
ParamsDict["MODEL_c_ii"] = h_ii * (1 + sigma * I_normalised)
ParamsDict["MODEL_c_ei"] = h_ei * (1 + sigma * I_normalised)
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.3]),a_i=numpy.array([2.0]),b_e=numpy.array([3]),b_i=numpy.array([3.7]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([10.0]))
ParamsDict["tag"] = "LCycleH_G" + str(ParamsDict["G"])
Simul_Pipeline(ParamsDict=ParamsDict)
"""
"""
# Set Wilson Cowan Model Parameters - Hysteresis
ParamsDict["MODEL_c_ee"] = np.array([16.0])
ParamsDict["MODEL_c_ei"] = np.array([12.0])
ParamsDict["MODEL_c_ie"] = np.array([10.0])
ParamsDict["MODEL_c_ii"] = np.array([3.0])
# Homogeneous Coupling constants
h_ee = ParamsDict["MODEL_c_ee"]
h_ei = ParamsDict["MODEL_c_ei"]
h_ie = ParamsDict["MODEL_c_ie"]
h_ii = ParamsDict["MODEL_c_ii"]
# Hysteresis
for J in np.arange(6):
ParamsDict["sigma"] =J*0.2
sigma = ParamsDict["sigma"]
# Heterogeneous Coupling Constants (array)
ParamsDict["MODEL_c_ie"] = h_ie * (1 + sigma * E_normalised)
ParamsDict["MODEL_c_ee"] = h_ee * (1 + sigma * E_normalised)
ParamsDict["MODEL_c_ii"] = h_ii * (1 + sigma * I_normalised)
ParamsDict["MODEL_c_ei"] = h_ei * (1 + sigma * I_normalised)
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.3]),a_i=numpy.array([2.0]),b_e=numpy.array([4]),b_i=numpy.array([3.7]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([10.0]))
ParamsDict["tag"] = "Hysteresis_G" + str(ParamsDict["G"])
Simul_Pipeline(ParamsDict=ParamsDict)
# FixedPt-eqbm
# Set Wilson Cowan Model Parameters - Fixed pt
ParamsDict["MODEL_c_ee"] = np.array([12.0])
ParamsDict["MODEL_c_ei"] = np.array([15.0])
ParamsDict["MODEL_c_ie"] = np.array([10.0])
ParamsDict["MODEL_c_ii"] = np.array([8.0])
# Homogeneous Coupling constants
h_ee = ParamsDict["MODEL_c_ee"]
h_ei = ParamsDict["MODEL_c_ei"]
h_ie = ParamsDict["MODEL_c_ie"]
h_ii = ParamsDict["MODEL_c_ii"]
for J in np.arange(6):
ParamsDict["sigma"] =J*0.2
sigma = ParamsDict["sigma"]
# Heterogeneous Coupling Constants (array)
ParamsDict["MODEL_c_ie"] = h_ie * (1 + sigma * E_normalised)
ParamsDict["MODEL_c_ee"] = h_ee * (1 + sigma * E_normalised)
ParamsDict["MODEL_c_ii"] = h_ii * (1 + sigma * I_normalised)
ParamsDict["MODEL_c_ei"] = h_ei * (1 + sigma * I_normalised)
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.0]),a_i=numpy.array([1.0]),b_e=numpy.array([4]),b_i=numpy.array([4]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([10.0]))
ParamsDict["tag"] = "FixedPt_G" + str(ParamsDict["G"])
Simul_Pipeline(ParamsDict=ParamsDict)
"""
"""
# Limit Cycle Params - LCycleCut
ParamsDict["MODEL_c_ee"] = np.array([11.0])
ParamsDict["MODEL_c_ei"] = np.array([10.0])
ParamsDict["MODEL_c_ie"] = np.array([10.0])
ParamsDict["MODEL_c_ii"] = np.array([1.0])
# Homogeneous Coupling constants
h_ee = ParamsDict["MODEL_c_ee"]
h_ei = ParamsDict["MODEL_c_ei"]
h_ie = ParamsDict["MODEL_c_ie"]
h_ii = ParamsDict["MODEL_c_ii"]
ParamsDict["MODEL"] = models.WilsonCowan(c_ee=ParamsDict["MODEL_c_ee"],c_ei=ParamsDict["MODEL_c_ei"],c_ie=ParamsDict["MODEL_c_ie"] ,c_ii=ParamsDict["MODEL_c_ii"],
a_e=numpy.array([1.0]),a_i=numpy.array([1.0]),b_e=numpy.array([1.5]),b_i=numpy.array([2.8]),tau_e=numpy.array([10.0]),
tau_i=numpy.array([65.0]))
ParamsDict["tag"] = "LCycleCut_G" + str(ParamsDict["G"])
Simul_Pipeline(ParamsDict=ParamsDict)
"""