diff --git a/examples/modules_gallery/comparison/plot_5_comparison_sorter_weaknesses.py b/examples/modules_gallery/comparison/plot_5_comparison_sorter_weaknesses.py index 562b174a31..c588ee82cb 100644 --- a/examples/modules_gallery/comparison/plot_5_comparison_sorter_weaknesses.py +++ b/examples/modules_gallery/comparison/plot_5_comparison_sorter_weaknesses.py @@ -17,17 +17,17 @@ * several units are merged into one units (overmerged units) -To demonstrate this the script `generate_erroneous_sorting.py` generate a ground truth sorting with 10 units. +To demonstrate this the script `generate_erroneous_sorting.py` generates a ground truth sorting with 10 units. We duplicate the results and modify it a bit to inject some "errors": * unit 1 2 are perfect * unit 3 4 have medium agreement - * unit 5 6 are over merge - * unit 7 is over split in 2 part + * unit 5 6 are overmerged + * unit 7 is oversplit in 2 parts * unit 8 is redundant 3 times * unit 9 is missing - * unit 10 have low agreement - * some units in tested do not exist at all in GT (15, 16, 17) + * unit 10 has low agreement + * some units in the tested data do not exist at all in GT (15, 16, 17) """ @@ -46,15 +46,15 @@ ############################################################################## -# Here the agreement matrix +# Here is the agreement matrix sorting_true, sorting_err = generate_erroneous_sorting() comp = compare_sorter_to_ground_truth(sorting_true, sorting_err, exhaustive_gt=True) sw.plot_agreement_matrix(comp, ordered=False) ############################################################################## -# Here the same matrix but **ordered** -# It is now quite trivial to check that fake injected errors are enlighted here. +# Here is the same matrix but **ordered** +# It is now quite trivial to check that fake injected errors are here. sw.plot_agreement_matrix(comp, ordered=True) @@ -81,13 +81,13 @@ ############################################################################## -# Here we can explore **"bad units"** units that a mixed a several possible errors. +# Here we can explore **"bad units"** units that have a mix of several possible errors. print("bad", comp.get_bad_units()) ############################################################################## -# There is a convenient function to summary everything. +# Here is a convenient function to summarize everything. comp.print_summary(well_detected_score=0.75, redundant_score=0.2, overmerged_score=0.2) diff --git a/examples/modules_gallery/core/plot_1_recording_extractor.py b/examples/modules_gallery/core/plot_1_recording_extractor.py index aa59abd76d..e7d773e9e6 100644 --- a/examples/modules_gallery/core/plot_1_recording_extractor.py +++ b/examples/modules_gallery/core/plot_1_recording_extractor.py @@ -48,7 +48,7 @@ ############################################################################## # We can now print properties that the :code:`RecordingExtractor` retrieves from the underlying recording. -print(f"Number of channels = {recording.get_channel_ids()}") +print(f"Number of channels = {len(recording.get_channel_ids())}") print(f"Sampling frequency = {recording.get_sampling_frequency()} Hz") print(f"Number of segments= {recording.get_num_segments()}") print(f"Number of timepoints in seg0= {recording.get_num_frames(segment_index=0)}") diff --git a/examples/modules_gallery/core/plot_3_handle_probe_info.py b/examples/modules_gallery/core/plot_3_handle_probe_info.py index 75b2b56be8..157efb683f 100644 --- a/examples/modules_gallery/core/plot_3_handle_probe_info.py +++ b/examples/modules_gallery/core/plot_3_handle_probe_info.py @@ -22,7 +22,7 @@ print(recording) ############################################################################### -# This generator already contain a probe object that you can retrieve +# This generator already contains a probe object that you can retrieve # directly and plot: probe = recording.get_probe() @@ -33,7 +33,7 @@ plot_probe(probe) ############################################################################### -# You can also overwrite the probe. In this case you need to manually make +# You can also overwrite the probe. In this case you need to manually set # the wiring (e.g. virtually connect each electrode to the recording device). # Let's use a probe from Cambridge Neurotech with 32 channels: diff --git a/examples/modules_gallery/core/plot_4_sorting_analyzer.py b/examples/modules_gallery/core/plot_4_sorting_analyzer.py index 20dc078197..d2be8be1d4 100644 --- a/examples/modules_gallery/core/plot_4_sorting_analyzer.py +++ b/examples/modules_gallery/core/plot_4_sorting_analyzer.py @@ -2,27 +2,27 @@ SortingAnalyzer =============== -SpikeInterface provides an object to gather a Recording and a Sorting to make -analyzer and visualization of the sorting : :py:class:`~spikeinterface.core.SortingAnalyzer`. +SpikeInterface provides an object to gather a Recording and a Sorting to perform various +analyses and visualizations of the sorting : :py:class:`~spikeinterface.core.SortingAnalyzer`. This :py:class:`~spikeinterface.core.SortingAnalyzer` class: * is the first step for all post post processing, quality metrics, and visualization. - * gather a recording and a sorting - * can be sparse or dense : all channel are used for all units or not. + * gathers a recording and a sorting + * can be sparse or dense : (i.e. whether all channel are used for all units or not). * handle a list of "extensions" - * "core extensions" are the one to extract some waveforms to compute templates: + * "core extensions" are the ones to extract some waveforms to compute templates: * "random_spikes" : select randomly a subset of spikes per unit * "waveforms" : extract waveforms per unit - * "templates": compute template using average or median - * "noise_levels" : compute noise level from traces (usefull to get snr of units) + * "templates": compute templates using average or median + * "noise_levels" : compute noise levels from traces (useful to get the snr of units) * can be in memory or persistent to disk (2 formats binary/npy or zarr) -More extesions are available in `spikeinterface.postprocessing` like "principal_components", "spike_amplitudes", +More extensions are available in `spikeinterface.postprocessing` like "principal_components", "spike_amplitudes", "unit_lcations", ... -Here the how! +Here is the how! """ import matplotlib.pyplot as plt @@ -46,11 +46,11 @@ recording = se.MEArecRecordingExtractor(local_path) print(recording) sorting = se.MEArecSortingExtractor(local_path) -print(recording) +print(sorting) ############################################################################### # The MEArec dataset already contains a probe object that you can retrieve -# an plot: +# and plot: probe = recording.get_probe() print(probe) @@ -68,22 +68,22 @@ print(analyzer) ############################################################################### -# A :py:class:`~spikeinterface.core.SortingAnalyzer` object can be persistane to disk +# A :py:class:`~spikeinterface.core.SortingAnalyzer` object can be persistant to disk # when using format="binary_folder" or format="zarr" folder = "analyzer_folder" analyzer = create_sorting_analyzer(sorting=sorting, recording=recording, format="binary_folder", folder=folder) print(analyzer) -# then it can be load back +# then it can be loaded back analyzer = load_sorting_analyzer(folder) print(analyzer) ############################################################################### -# No extension are computed yet. +# No extensions are computed yet. # Lets compute the most basic ones : select some random spikes per units, -# extract waveforms (sparse in this examples) and compute templates. -# You can see that printing the object indicate which extension are computed yet. +# extract waveforms (sparse in this example) and compute templates. +# You can see that printing the object indicates which extension are already computed. analyzer.compute( "random_spikes", @@ -103,14 +103,14 @@ "waveforms", ms_before=1.0, ms_after=2.0, return_scaled=True, n_jobs=8, chunk_duration="1s", progress_bar=True ) -# which is equivalent of this +# which is equivalent to this: job_kwargs = dict(n_jobs=8, chunk_duration="1s", progress_bar=True) analyzer.compute("waveforms", ms_before=1.0, ms_after=2.0, return_scaled=True, **job_kwargs) ############################################################################### # Each extension can retrieve some data -# For instance "waveforms" extension can retrieve wavfroms per units +# For instance the "waveforms" extension can retrieve waveforms per units # which is a numpy array of shape (num_spikes, num_sample, num_channel): ext_wf = analyzer.get_extension("waveforms") @@ -134,7 +134,7 @@ ############################################################################### -# This can be plot easily. +# This can be plotted easily. for unit_index, unit_id in enumerate(analyzer.unit_ids[:3]): fig, ax = plt.subplots() @@ -144,14 +144,15 @@ ############################################################################### -# The SortingAnalyzer can be saved as to another format using save_as() -# So the computation can be done with format="memory" and +# The SortingAnalyzer can be saved to another format using save_as() +# So the computation can be done with format="memory" and then saved to disk +# in the zarr format by using save_as() analyzer.save_as(folder="analyzer.zarr", format="zarr") ############################################################################### -# The SortingAnalyzer offer also select_units() method wich allows to export +# The SortingAnalyzer also offers select_units() method which allows exporting # only some relevant units for instance to a new SortingAnalyzer instance. analyzer_some_units = analyzer.select_units( diff --git a/examples/modules_gallery/core/plot_5_append_concatenate_segments.py b/examples/modules_gallery/core/plot_5_append_concatenate_segments.py index b67a1ff0c2..5cb1cccb6f 100644 --- a/examples/modules_gallery/core/plot_5_append_concatenate_segments.py +++ b/examples/modules_gallery/core/plot_5_append_concatenate_segments.py @@ -4,11 +4,11 @@ Append and/or concatenate segments =================================== -Sometimes a recording can be split in several subparts, for instance a baseline and an intervention. +Sometimes a recording can be split into several subparts, for instance a baseline and an intervention. Similarly to `NEO `_ we define each subpart as a "segment". -SpikeInterface has tools to manipulate these segments. There are two ways: +SpikeInterface has tools to interact with these segments. There are two ways: 1. :py:func:`~spikeinterface.core.append_recordings()` and :py:func:`~spikeinterface.core.append_sortings()` diff --git a/examples/modules_gallery/qualitymetrics/plot_4_curation.py b/examples/modules_gallery/qualitymetrics/plot_4_curation.py index f625914191..6a9253c093 100644 --- a/examples/modules_gallery/qualitymetrics/plot_4_curation.py +++ b/examples/modules_gallery/qualitymetrics/plot_4_curation.py @@ -32,8 +32,8 @@ # Create SortingAnalyzer # ----------------------- # -# For this example, we will need a :code:`SortingAnalyzer` and some extension -# to be computed fist +# For this example, we will need a :code:`SortingAnalyzer` and some extensions +# to be computed first analyzer = si.create_sorting_analyzer(sorting=sorting, recording=recording, format="memory") diff --git a/examples/modules_gallery/widgets/plot_3_waveforms_gallery.py b/examples/modules_gallery/widgets/plot_3_waveforms_gallery.py index fc4a7775d2..2845dcc62c 100644 --- a/examples/modules_gallery/widgets/plot_3_waveforms_gallery.py +++ b/examples/modules_gallery/widgets/plot_3_waveforms_gallery.py @@ -17,7 +17,7 @@ # from the repo 'https://gin.g-node.org/NeuralEnsemble/ephy_testing_data' local_path = si.download_dataset(remote_path="mearec/mearec_test_10s.h5") -recording, sorting = si.read_mearec(local_path) +recording, sorting = se.read_mearec(local_path) print(recording) print(sorting) @@ -25,8 +25,8 @@ # Extract spike waveforms # ----------------------- # -# For convenience, metrics are computed on the WaveformExtractor object that gather recording/sorting and -# extracted waveforms in a single object +# For convenience, metrics are computed on the SortingAnalyzer object that gathers recording/sorting and +# the extracted waveforms in a single object analyzer = si.create_sorting_analyzer(sorting=sorting, recording=recording, format="memory") @@ -72,7 +72,7 @@ # plot_unit_waveform_density_map() # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # -# This is your best friend to check over merge +# This is your best friend to check for overmerge unit_ids = sorting.unit_ids[:4] sw.plot_unit_waveforms_density_map(analyzer, unit_ids=unit_ids, figsize=(14, 8)) diff --git a/pyproject.toml b/pyproject.toml index 804c89178e..e7b9a98427 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -169,6 +169,7 @@ docs = [ "pandas", # in the modules gallery comparison tutorial "hdbscan>=0.8.33", # For sorters spykingcircus2 + tridesclous "numba", # For many postprocessing functions + "xarray", # For use of SortingAnalyzer zarr format # for release we need pypi, so this needs to be commented "probeinterface @ git+https://github.com/SpikeInterface/probeinterface.git", # We always build from the latest version "neo @ git+https://github.com/NeuralEnsemble/python-neo.git", # We always build from the latest version