diff --git a/README.md b/README.md index e51a05c..1a9b1db 100644 --- a/README.md +++ b/README.md @@ -1,10 +1,49 @@ -# hybrid_template_library -Library of templates to create hybrid data for spike sorting benchmarks +# SpikeInterface Hybrid Template Library -[click here for access to the library](https://spikeinterface.github.io/hybrid_template_library/) +This repo contains a set of tools to construct and interact with a library of hybrid templates for spike sorting benchmarks. -## Testing locally +The library is made of several datasets stored a zarr file and can be accessed through the spikeinterface library. +The library is also accessible through a web-app that allows users to browse the templates and download them for +use in their spike sorting benchmarks. + + +## Template sources + +The following datasets are available in the library: + +- [IBL](https://dandiarchive.org/dandiset/000409?search=IBL&pos=3): Neuropixels 1.0 templates from the IBL Brain Wide Map dataset +- [Steinmetz and Ye. 2022](https://doi.org/10.6084/m9.figshare.19493588.v2): Neuropixels Ultra templates from Steinmetz and Ye. 2022 + +The templates have been processed and stored with the `python` scripts in the `python/scripts` folder and are stored in `zarr` +format in the `s3://spikeinterface-template-library` bucket hosted on `AWS S3` by [CatalystNeuro](https://www.catalystneuro.com/). + + +## Accessing the data through `SpikeInterface` + +The library can be accessed through the `spikeinterface` library using the `generation` module. +The following code shows how to access the library to fetch a dataframe with the available templates +and download the templates corresponing to a specific user query: + +```python +import spikeinterface.generation as sgen + +templates_info = sgen.fetch_templates_database_info() + +# select templates with amplitude between 200 and 250uV +templates_info_selected = templates_info.query('amplitude_uv > 200 and amplitude_uv < 250') +templates_selected = sgen.sgen.query_templates_from_database(templates_info_selected) +``` + +For a more comprehensive example on how to construct hybrid recordings from the template library and run spike sorting +benchmarks, please refer to the SpikeInterface tutorial on [Hybrid recordings](https://spikeinterface.readthedocs.io/en/latest/how_to/benchmark_with_hybrid_recordings.html). + +## Live Web-App + +The template library can be browsed through a web-app (source code included in this repo). The web-app is hosted on github pages and can be accessed through the following link: [https://spikeinterface.github.io/hybrid_template_library/](https://spikeinterface.github.io/hybrid_template_library/) + + +### Testing locally How to run a python server for testing zarr access @@ -38,10 +77,10 @@ python -c "from http.server import HTTPServer, SimpleHTTPRequestHandler; import ``` -Then you run the npm script to start the server and open the browser +Then you run the `npm` script to start the server and open the browser ```bash -export TEST_URL="http://localhost:8000/zarr_store.zarr" +export TEST_URL="http://localhost:8000/test_zarr.zarr" npm run start ``` diff --git a/pyproject.toml b/pyproject.toml index f127e31..4194441 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -21,6 +21,7 @@ classifiers = [ dependencies = [ "spikeinterface >= 0.101", + "MEArec", "tqdm", "pynwb>=2.8", "remfile==0.1", diff --git a/python/consolidate_datasets.py b/python/consolidate_datasets.py index 54a30fa..098bfb1 100644 --- a/python/consolidate_datasets.py +++ b/python/consolidate_datasets.py @@ -101,8 +101,12 @@ def consolidate_datasets(dry_run: bool = False, verbose: bool = False): depth_best_channel = channel_depths[best_channel_indices] peak_to_peak_best_channel = zarr_group["peak_to_peak"][template_indices, best_channel_indices] - noise_best_channel = zarr_group["channel_noise_levels"][best_channel_indices] - signal_to_noise_ratio_best_channel = peak_to_peak_best_channel / noise_best_channel + if "channel_noise_levels" not in zarr_group: + noise_best_channel = np.nan * np.zeros(num_units) + signal_to_noise_ratio_best_channel = np.nan * np.zeros(num_units) + else: + noise_best_channel = zarr_group["channel_noise_levels"][best_channel_indices] + signal_to_noise_ratio_best_channel = peak_to_peak_best_channel / noise_best_channel new_entry = pd.DataFrame( { diff --git a/python/delete_templates.py b/python/delete_templates.py index a609fc3..1fb31ee 100644 --- a/python/delete_templates.py +++ b/python/delete_templates.py @@ -38,7 +38,7 @@ def delete_templates_too_few_spikes(min_spikes=50, dry_run=False, verbose=True): """ This function will delete templates associated to spike trains with too few spikes. - The initial database was in fact created without a minimum number of spikes per unit, + The initial database was in fact created without a minimum number of spikes per unit, so some units have very few spikes and possibly a noisy template. """ import spikeinterface.generation as sgen @@ -49,7 +49,9 @@ def delete_templates_too_few_spikes(min_spikes=50, dry_run=False, verbose=True): if len(templates_to_remove) > 0: if verbose: - print(f"Removing {len(templates_to_remove)}/{len(templates_info)} templates with less than {min_spikes} spikes") + print( + f"Removing {len(templates_to_remove)}/{len(templates_info)} templates with less than {min_spikes} spikes" + ) datasets = np.unique(templates_to_remove["dataset"]) for d_i, dataset in enumerate(datasets): @@ -59,7 +61,7 @@ def delete_templates_too_few_spikes(min_spikes=50, dry_run=False, verbose=True): template_indices_to_remove = templates_in_dataset.template_index.values s3_path = templates_in_dataset.dataset_path.values[0] - # to filter from the zarr dataset: + # to filter from the zarr dataset: datasets_to_filter = [ "templates_array", "best_channel_index", @@ -84,26 +86,32 @@ def delete_templates_too_few_spikes(min_spikes=50, dry_run=False, verbose=True): print(f"\tRemoving {n_original_units - n_units_to_keep} templates from {n_original_units}") for dset in datasets_to_filter: dataset_original = zarr_root[dset] + if len(dataset_original) == n_units_to_keep: + print(f"\t\tDataset: {dset} - shape: {dataset_original.shape} - already updated") + continue dataset_filtered = dataset_original[unit_indices_to_keep] if not dry_run: if verbose: print(f"\t\tUpdating: {dset} - shape: {dataset_filtered.shape}") + if dataset_filtered.dtype.kind == "O": + dataset_filtered = dataset_filtered.astype(str) zarr_root[dset] = dataset_filtered else: if verbose: print(f"\t\tDry run: {dset} - shape: {dataset_filtered.shape}") if not dry_run: zarr.consolidate_metadata(zarr_root.store) - + + def delete_templates_with_num_samples(dry_run=False): """ - This function will delete templates with number of samples, + This function will delete templates with number of samples, which were not corrected for in the initial database. """ bucket = "spikeinterface-template-database" boto_client = boto3.client("s3") - verbose = True - + verbose = True + templates_to_erase_from_bucket = [ "000409_sub-KS084_ses-1b715600-0cbc-442c-bd00-5b0ac2865de1_behavior+ecephys+image_bbe6ebc1-d32f-42dd-a89c-211226737deb.zarr", "000409_sub-KS086_ses-e45481fa-be22-4365-972c-e7404ed8ab5a_behavior+ecephys+image_f2a098e7-a67e-4125-92d8-36fc6b606c45.zarr", @@ -118,7 +126,9 @@ def delete_templates_with_num_samples(dry_run=False): "000409_sub-KS096_ses-f819d499-8bf7-4da0-a431-15377a8319d5_behavior+ecephys+image_4ea45238-55b1-4d54-ba92-efa47feb9f57.zarr", ] existing_templates = list_zarr_directories(bucket, boto_client=boto_client) - templates_to_erase_from_bucket = [template for template in templates_to_erase_from_bucket if template in existing_templates] + templates_to_erase_from_bucket = [ + template for template in templates_to_erase_from_bucket if template in existing_templates + ] if dry_run: if verbose: print(f"Would erase {len(templates_to_erase_from_bucket)} templates from bucket: {bucket}") diff --git a/python/upload_ibl_templates.py b/python/upload_ibl_templates.py index 34083d5..a3477a4 100644 --- a/python/upload_ibl_templates.py +++ b/python/upload_ibl_templates.py @@ -1,12 +1,17 @@ """ This script constructs and uploads the templates from the International Brain Laboratory (IBL) datasets available from DANDI (https://dandiarchive.org/dandiset/000409?search=IBL&pos=3). -The templates are constructed using the spikeinterface package and are saved to a -Zarr file. The Zarr file is then uploaded to an S3 bucket hosted by CatalystNeuro for storage and sharing. -The s3 bucket "spikeinterface-template-database" is used by the SpikeInterface hybrid framework to construct hybrid -recordings. +Templates are extracted by combining the raw data from the NWB files on DANDI with the spike trains form +the Alyx ONE database. Only the units that passed the IBL quality control are used. +To minimize the amount of drift in the templates, only the last 30 minutes of the recording are used. +The raw recordings are pre-processed with a high-pass filter and a common median reference prior to +template extraction. Units with less than 50 spikes are excluded from the template database. + +Once the templates are constructed they are saved to a Zarr file which is then uploaded to +"spikeinterface-template-database" bucket (hosted by CatalystNeuro). """ + from pathlib import Path import numpy as np @@ -294,7 +299,9 @@ def find_channels_with_max_peak_to_peak_vectorized(templates): if upload_data: # Create a S3 file system object with explicit credentials - s3_kwargs = dict(anon=False, key=aws_access_key_id, secret=aws_secret_access_key, client_kwargs=client_kwargs) + s3_kwargs = dict( + anon=False, key=aws_access_key_id, secret=aws_secret_access_key, client_kwargs=client_kwargs + ) s3 = s3fs.S3FileSystem(**s3_kwargs) # Specify the S3 bucket and path diff --git a/python/upload_npultra_templates.py b/python/upload_npultra_templates.py index 89ab041..e642e09 100644 --- a/python/upload_npultra_templates.py +++ b/python/upload_npultra_templates.py @@ -1,12 +1,15 @@ """ This script constructs and uploads the templates from the Neuropixels Ultra dataset form Steinmetz and Ye, 2022. The dataset is hosted on Figshare at https://doi.org/10.6084/m9.figshare.19493588.v2 -The templates and relevant metadata are packaged into a `spikeinterface.Templates` and saved to a -Zarr file. The Zarr file is then uploaded to an S3 bucket hosted by CatalystNeuro for storage and sharing. -The s3 bucket "spikeinterface-template-database" is used by the SpikeInterface hybrid framework to construct hybrid -recordings. +Since the templates in the dataset have rather short cut outs, which might negatively interfere with +hybrid spike injections, the templates are padded and smoothed using the `MEArec` package so that they +end up having 240 samples (90 before, 150 after the peak). + +Once the templates are constructed they are saved to a Zarr file which is then uploaded to +"spikeinterface-template-database" bucket (hosted by CatalystNeuro). """ + from pathlib import Path import numpy as np @@ -18,7 +21,27 @@ import probeinterface as pi import spikeinterface as si +from MEArec.tools import pad_templates, sigmoid + + +def smooth_edges(templates, pad_samples, smooth_percent=0.5, smooth_strength=1): + # smooth edges + sigmoid_samples = int(smooth_percent * pad_samples[0]) // 2 * 2 + sigmoid_x = np.arange(-sigmoid_samples // 2, sigmoid_samples // 2) + b = smooth_strength + sig = sigmoid(sigmoid_x, b) + 0.5 + window = np.ones(templates.shape[-1]) + window[:sigmoid_samples] = sig + window[-sigmoid_samples:] = sig[::-1] + + templates *= window + return templates + + +# parameters min_spikes_per_unit = 50 +target_nbefore = 90 +target_nafter = 150 upload_data = False npultra_templates_path = Path("/home/alessio/Documents/Data/Templates/NPUltraWaveforms/") @@ -54,23 +77,50 @@ unit_ids = unit_ids[unit_ids_enough_spikes] spikes_per_unit = spikes_per_unit[unit_ids_enough_spikes] -# sort the units by unit_id +# Sort the units by unit_id sort_unit_indices = np.argsort(unit_ids) -unit_itd = unit_ids[sort_unit_indices] +unit_ids = unit_ids[sort_unit_indices].astype(int) spikes_per_unit = spikes_per_unit[sort_unit_indices] brain_area_acronym = brain_area_acronym[sort_unit_indices] -# Create Templates object +# Process the templates to make them smooth nbefore = 40 sampling_frequency = 30000 +num_samples = templates_array.shape[1] +nafter = num_samples - nbefore + +pad_samples = [target_nbefore - nbefore, target_nafter - nafter] + +# MEArec needs swap axes +print("Padding and smoothing templates") +templates_array_swap = templates_array.swapaxes(1, 2) +tmp_templates_file = "templates_padded.raw" +templates_padded_swap = pad_templates( + templates_array_swap, + pad_samples, + drifting=False, + dtype="float", + verbose=False, + n_jobs=-1, + tmp_file=tmp_templates_file, + parallel=True, +) +templates_padded = templates_padded_swap.swapaxes(1, 2) +Path(tmp_templates_file).unlink() +# smooth edges +templates_smoothed_swap = smooth_edges(templates_padded_swap, pad_samples) +templates_smoothed = templates_smoothed_swap.swapaxes(1, 2) + +# Create Templates object +print("Creating Templates object") templates_ultra = si.Templates( - templates_array=templates_array, + templates_array=templates_smoothed, sampling_frequency=sampling_frequency, nbefore=nbefore, unit_ids=unit_ids, probe=probe, - is_scaled=True + is_scaled=True, ) best_channel_index = si.get_template_extremum_channel(templates_ultra, mode="peak_to_peak", outputs="index")