##
## Coefficients:
## Mean SD
-## (Intercept) 1.880969e+03 1.004751e+01
-## size 4.299105e+00 4.215697e-01
-## age -1.996865e+01 1.310667e+00
-## greensp 5.304726e-04 6.544811e-04
-## population -6.654456e-03 1.060707e-03
-## museums -4.511823e+01 9.175141e+00
-## airbnb 7.234227e-01 2.314932e-01
+## (Intercept) 1.880563e+03 9.2553985121
+## size 4.326023e+00 0.4325595027
+## age -1.997018e+01 1.2471979927
+## greensp 5.829718e-04 0.0006813374
+## population -6.584233e-03 0.0011227284
+## museums -4.534275e+01 9.5807150591
+## airbnb 6.574944e-01 0.1764067282
##
## Spatial Coefficients:
## lambda
-## 0.070876
+## 0.111888
##
## Diagnostics
-## Deviance information criterion (DIC): 28198.46
-## Effective number of parameters (pd): -1.870333
-## Log likelihood: -14101.1
-## Pseudo R squared: 0.3582752
+## Deviance information criterion (DIC): 28193.07
+## Effective number of parameters (pd): -2.092455
+## Log likelihood: -14098.63
+## Pseudo R squared: 0.3569871
##
## Quantiles:
## 5% 25% 50% 75% 95%
-## (Intercept) 1.864880e+03 1.874552e+03 1.880957e+03 1.887456e+03 1.897001e+03
-## size 3.610783e+00 4.006603e+00 4.322592e+00 4.583691e+00 4.983597e+00
-## age -2.207850e+01 -2.087071e+01 -1.995724e+01 -1.901799e+01 -1.790105e+01
-## greensp -6.921436e-04 1.703272e-04 5.736104e-04 9.622126e-04 1.489968e-03
-## population -8.359189e-03 -7.311060e-03 -6.666792e-03 -5.998892e-03 -4.847390e-03
-## museums -6.003316e+01 -5.108847e+01 -4.522155e+01 -3.899018e+01 -2.960428e+01
-## airbnb 3.630902e-01 5.791529e-01 7.000081e-01 8.588804e-01 1.159867e+00
+## (Intercept) 1.865244e+03 1.874265e+03 1.881036e+03 1.886741e+03 1.895768e+03
+## size 3.641719e+00 4.033250e+00 4.310376e+00 4.628015e+00 5.048434e+00
+## age -2.200615e+01 -2.083570e+01 -1.996753e+01 -1.911833e+01 -1.802003e+01
+## greensp -6.439277e-04 2.933380e-04 6.549234e-04 1.027634e-03 1.541188e-03
+## population -8.302344e-03 -7.287608e-03 -6.676006e-03 -5.995643e-03 -4.711512e-03
+## museums -6.123372e+01 -5.128380e+01 -4.534965e+01 -3.955427e+01 -2.992627e+01
+## airbnb 3.592684e-01 5.376341e-01 6.620247e-01 7.804008e-01 9.272886e-01
and secondly, given lambda = 0 (no interaction at the higher level)
we get
+## (Intercept) 1.863706e+03 1.873326e+03 1.879689e+03 1.887368e+03 1.897511e+03
+## size 3.490029e+00 3.923317e+00 4.296004e+00 4.663584e+00 5.184349e+00
+## age -2.200291e+01 -2.074799e+01 -1.982105e+01 -1.895658e+01 -1.769628e+01
+## greensp 1.420867e-05 6.256490e-04 9.982406e-04 1.942325e-03 3.742835e-03
+## population -1.315579e-02 -1.102766e-02 -9.232202e-03 -7.360224e-03 -4.491216e-03
+## museums -5.960091e+01 -5.079269e+01 -4.475590e+01 -3.875467e+01 -2.831173e+01
+## airbnb 6.098123e-02 3.628817e-01 5.108585e-01 6.384128e-01 8.167038e-01