forked from varoudis/Simple_Axial_Line_Analyser
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathSimple_Axial_Line_Analyser.pde
285 lines (245 loc) · 9.73 KB
/
Simple_Axial_Line_Analyser.pde
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Copyright (C) 2013, Tasos Varoudis
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
// 9th Space Syntax Symposium - Software Workshop
// Simple axial line analyser. Introduction to concepts like 'integration', 'total depth', 'node count', 'connectivity'....
// Not all classes are finished but it runs fine! Some missing protectors too (overflow.. etc)
//
// Books and references:
// Hillier, Bill and Hanson, Julienne. The social logic of space.
// Robert Sedgewick, Kevin Wayne, Algorithms (4th Edition).
// Teklenburg (1993) Space syntax standardised integration measures and some simulations.
// Processing Books: http://processing.org/books/
// depthmapX source code: https://github.com/varoudis/depthmapX
//
//Global
Table imported_data;
Table export_data;
// The graph!
Graph graph;
ArrayList<AxialLine> axial_lines;
// drawing helpers //
float yAxis = -1f;
PVector min, max, centre;
float drawScale;
int currentMeasure = 0;
ArrayList<float []> measure_range = new ArrayList<float []>();
boolean displayGraph;
String overHeadText = "";
// //
void setup() {
// Init window
size(1024, 768);
smooth(); // antialiasing
// Import data from CSV file. It must be in the project's "data" folder.
imported_data = loadTable("axial_map01.csv", "header");
println(imported_data.getRowCount() + " total rows in CSV file");
println(imported_data.getColumnCount());
axial_lines = new ArrayList<AxialLine>();
// Init and build Graph from data
int number_of_lines = imported_data.getRowCount();
graph = new Graph(number_of_lines);
for (int i=0;i<imported_data.getRowCount();++i) {
TableRow row = imported_data.getRow(i);
int id = row.getInt("Ref"); // keep the Ref so you can compare with depthmapX
float x1 = row.getFloat("x1");
float y1 = row.getFloat("y1");
float x2 = row.getFloat("x2");
float y2 = row.getFloat("y2");
PVector p1 = new PVector(x1, y1);
PVector p2 = new PVector(x2, y2);
AxialLine l = new AxialLine(p1, p2, id);
axial_lines.add(l);
}
println("Line intersection!");
// line intersection (basic!)
// dummy all to all
for (int i=0;i<axial_lines.size();++i) {
double x1 = axial_lines.get(i).m_p1.x;
double y1 = axial_lines.get(i).m_p1.y;
double x2 = axial_lines.get(i).m_p2.x;
double y2 = axial_lines.get(i).m_p2.y;
// our graph class does not check for 'parallel edges'
// but with this trick its ok, usually with the "addEdge" we check.
for (int j=i+1;j<axial_lines.size();++j) {
double x3 = axial_lines.get(j).m_p1.x;
double y3 = axial_lines.get(j).m_p1.y;
double x4 = axial_lines.get(j).m_p2.x;
double y4 = axial_lines.get(j).m_p2.y;
// add links/edges
if (linesIntersect(x1, y1, x2, y2, x3, y3, x4, y4)) {
// hit!! add an edge!
// i/j and Ref are the same here ;)
graph.addEdge(i, j);
}
}
}
// checks
println("number of Vs: " + graph.V());
println("number of Es: " + graph.E());
// Run BFS search and analysis
for (int source_id=0;source_id<graph.V();++source_id) {
BreadthFirstPaths bfs = new BreadthFirstPaths(graph, source_id);
int node_count = 1; // 1 because I have to count myself too
int total_depth = 0;
for (int dest_id=0;dest_id<graph.V();++dest_id) {
if (source_id!=dest_id) {
if (bfs.hasPathTo(dest_id)) { // we know its a fully connected graph...
node_count++;
total_depth = total_depth + bfs.distTo(dest_id);
}
}
}
// compute and add measures
axial_lines.get(source_id).addMeasure("total_depth", total_depth);
axial_lines.get(source_id).addMeasure("node_count", node_count);
float d_value = 2.0 * ( (node_count * ( (log((node_count+2.0)/3.0)/log(2)) - 1.0) ) + 1.0 ) / ((node_count - 1.0) * (node_count - 2.0));
float p_value = 2.0 * (node_count - (log(node_count)/log(2)) - 1.0) / ((node_count - 1.0) * (node_count - 2.0));
float teklinteg = log(0.5 * (node_count - 2.0)) / log(total_depth - node_count + 1.0);
float mean_depth = total_depth/(node_count - 1.0);
float ra = 2.0 * ( mean_depth - 1.0)/( node_count-2.0 );
float raa = ra / d_value;
float intHH = 1.0 / raa;
float intP = 1.0 / ( ra / p_value );
axial_lines.get(source_id).addMeasure("mean_depth", mean_depth);
axial_lines.get(source_id).addMeasure("ra", ra);
axial_lines.get(source_id).addMeasure("raa", raa);
axial_lines.get(source_id).addMeasure("intHH", intHH);
axial_lines.get(source_id).addMeasure("intP", intP);
axial_lines.get(source_id).addMeasure("teklinteg", teklinteg);
}
//test print
axial_lines.get(0).printAll();
// Export data // Write CSV
export_data = new Table();
export_data.addColumn("Ref");
export_data.addColumn("x1");
export_data.addColumn("y1");
export_data.addColumn("x2");
export_data.addColumn("y2");
for (int j=0;j<axial_lines.get(0).m_measure_names.size();++j) {
export_data.addColumn(axial_lines.get(0).m_measure_names.get(j));
}
for (int j=0;j<axial_lines.size();++j) {
TableRow newRow = export_data.addRow();
int ref = axial_lines.get(j).m_ref;
float x1 = axial_lines.get(j).m_p1.x;
float y1 = axial_lines.get(j).m_p1.y;
float x2 = axial_lines.get(j).m_p2.x;
float y2 = axial_lines.get(j).m_p2.y;
// can be done in one go, without the lines above!
newRow.setInt("Ref", ref);
newRow.setFloat("x1", x1);
newRow.setFloat("y1", y1);
newRow.setFloat("x2", x2);
newRow.setFloat("y2", y2);
for (int k=0;k<axial_lines.get(j).m_measure_names.size();++k) {
newRow.setFloat(axial_lines.get(j).m_measure_names.get(k), axial_lines.get(j).m_measure_values.get(k));
}
}
// write the CSV file
saveTable(export_data, "data/export_axial_map01.csv");
// helpers for display
findMap();
findMeasuresRange();
overHeadText = axial_lines.get(0).m_measure_names.get(0);
}
void draw() {
// Simple map drawing
background(255);
// Axial map
colorMode(HSB);
for (AxialLine axl: axial_lines)
axl.draw();
// Graph map
colorMode(RGB);
if (displayGraph) {
stroke(120);
fill(120);
for (int i = 0; i < graph.adj.length; i++) {
Iterator it = graph.adj[i].iterator();
while (it.hasNext ()) {
int j = (Integer) it.next();
drawScaledCircle(axial_lines.get(i).getCentreX(), axial_lines.get(i).getCentreY(), 6);
drawScaledLine(axial_lines.get(i).getCentreX(), axial_lines.get(i).getCentreY(), axial_lines.get(j).getCentreX(), axial_lines.get(j).getCentreY() );
}
}
}
fill(0);
text(overHeadText, 10, 10, 200, 200);
}
// drawing helpers //
// Find extremes for scaling
void findMap() {
min = new PVector(Float.MAX_VALUE, Float.MAX_VALUE);
max = new PVector(-Float.MAX_VALUE, -Float.MAX_VALUE);
for (AxialLine axl: axial_lines) {
if (axl.m_p1.x < min.x) min.x = axl.m_p1.x;
if (axl.m_p1.y < min.y) min.y = axl.m_p1.y;
if (axl.m_p2.x < min.x) min.x = axl.m_p1.x;
if (axl.m_p2.y < min.y) min.y = axl.m_p2.y;
if (axl.m_p1.x > max.x) max.x = axl.m_p1.x;
if (axl.m_p1.y > max.y) max.y = axl.m_p1.y;
if (axl.m_p2.x > max.x) max.x = axl.m_p1.x;
if (axl.m_p2.y > max.y) max.y = axl.m_p2.y;
}
centre = new PVector(.5f*(max.x+min.x), .5f*(max.y+min.y));
drawScale = .9f*height/(max.y-min.y);
}
// fins measure range for display
void findMeasuresRange() {
for (int i = 0; i < axial_lines.get(0).m_measure_values.size(); i++) {
measure_range.add(new float [3]);
measure_range.get(i)[0] = Float.MAX_VALUE; //min
measure_range.get(i)[1] = -Float.MAX_VALUE; //max
measure_range.get(i)[2] = 0; // 1/range
}
for (AxialLine axl: axial_lines)
for (int i = 0; i < axl.m_measure_values.size(); i++) {
if (axl.m_measure_values.get(i) < measure_range.get(i)[0]) measure_range.get(i)[0] = axl.m_measure_values.get(i);
if (axl.m_measure_values.get(i) > measure_range.get(i)[1]) measure_range.get(i)[1] = axl.m_measure_values.get(i);
}
for (float [] value : measure_range) {
value[2] = 1.0/(value[1]-value[0]);
}
}
void drawScaledCircle(float px, float py, float sz) { // sz is screen size, not scaled
ellipse(drawScale*(px-centre.x)+width*.5f, drawScale*(py-centre.y)*yAxis+height*.5f, sz, sz);
}
void drawScaledLine(float px, float py, float qx, float qy) {
line(drawScale*(px-centre.x)+width*.5f, drawScale*(py-centre.y)*yAxis+height*.5f, drawScale*(qx-centre.x)+width*.5f, drawScale*(qy-centre.y)*yAxis+height*.5f);
}
// //
void keyPressed() {
switch(key) {
case 's':
case 'S':
saveFrame("####.png");
break;
case 'm':
case 'M':
if (axial_lines != null && axial_lines.get(0) != null && axial_lines.get(0).m_measure_names != null)
currentMeasure = (currentMeasure + 1)%axial_lines.get(0).m_measure_names.size();
overHeadText = axial_lines.get(0).m_measure_names.get(currentMeasure);
break;
case 'n':
case 'N':
if (axial_lines != null && axial_lines.get(0) != null && axial_lines.get(0).m_measure_names != null)
currentMeasure = currentMeasure - 1;
if(currentMeasure < 0) currentMeasure = axial_lines.get(0).m_measure_names.size()-1;
overHeadText = axial_lines.get(0).m_measure_names.get(currentMeasure);
break;
case 'g':
case 'G':
displayGraph = !displayGraph;
break;
}
}