Skip to content

Latest commit

 

History

History
56 lines (42 loc) · 1.68 KB

README.md

File metadata and controls

56 lines (42 loc) · 1.68 KB

Applied Deep Learning Spring 2020 Final Project -- Singing Transcription

Report

Link

Demo Video

Link

Ground truth file structure

{
  "song_id": [[start_time, end_time, pitch], ...]
  ...
}

For example:

{
  "1": [[0.0, 0.5, 60], ...],
  ...
  "123": [[0.0, 0.5, 58], ...]
}

Scripts usage

Convert music file to midi

This script is used to run efficientnet (TODO: run RNN with pretrained model).

It does svs first (using spleeter), and then run efficientnet. Finally, it generates a midi file.

python do_everything.py $input_wav_file $output_path

  • input_wav_file: Path to the input file.
  • output_path: Output midi path.

The default model is efficientnet-b3 and the model path is "sing_voice_transcription/efficientnet/b4_e_6600"

If you want to specify the model path, then you can add another argument:

python do_everything.py $input_wav_file $output_path -mp $model_path

  • model_path: Path to the model file.

Evaluation

This script is used to calculate the evaluation measures.

python evaluate.py $gt_file $predicted_file

  • gt_file: Ground truth file with .json format.
  • predicted_file: Predicted file with .json format.

Generate dataset instance to a file:

This script will read from a data directory and generate custom dataset class instance into a binary file.

python generate_dataset.py $data_dir $output_dir --for-rnn

  • data_dir: Directory of the songs.
  • output_dir: Path to the directory to save the dataset.pkl.
  • --for-rnn: Flag for generating dataset for RNN training.