forked from atpaino/deep-text-corrector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
correct_text.py
438 lines (355 loc) · 16.4 KB
/
correct_text.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
"""Program used to create, train, and evaluate "text correcting" models.
Defines utilities that allow for:
1. Creating a TextCorrectorModel
2. Training a TextCorrectorModel using a given DataReader (i.e. a data source)
3. Decoding predictions from a trained TextCorrectorModel
The program is best run from the command line using the flags defined below or
through an IPython notebook.
Note: this has been mostly copied from Tensorflow's translate.py demo
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import os
import sys
import time
from collections import defaultdict
import numpy as np
import tensorflow as tf
from data_reader import EOS_ID
from text_corrector_data_readers import MovieDialogReader, PTBDataReader
from text_corrector_models import TextCorrectorModel
tf.app.flags.DEFINE_string("config", "TestConfig", "Name of config to use.")
tf.app.flags.DEFINE_string("data_reader_type", "MovieDialogReader",
"Type of data reader to use.")
tf.app.flags.DEFINE_string("train_path", "train", "Training data path.")
tf.app.flags.DEFINE_string("val_path", "val", "Validation data path.")
tf.app.flags.DEFINE_string("test_path", "test", "Testing data path.")
tf.app.flags.DEFINE_string("model_path", "model", "Path where the model is "
"saved.")
tf.app.flags.DEFINE_boolean("decode", False, "Whether we should decode data "
"at test_path. The default is to "
"train a model and save it at "
"model_path.")
FLAGS = tf.app.flags.FLAGS
class TestConfig():
# We use a number of buckets and pad to the closest one for efficiency.
buckets = [(10, 10), (15, 15), (20, 20), (40, 40)]
steps_per_checkpoint = 20
max_steps = 100
max_vocabulary_size = 10000
size = 128
num_layers = 1
max_gradient_norm = 5.0
batch_size = 64
learning_rate = 0.5
learning_rate_decay_factor = 0.99
use_lstm = False
use_rms_prop = False
class DefaultPTBConfig():
buckets = [(10, 10), (15, 15), (20, 20), (40, 40)]
steps_per_checkpoint = 100
max_steps = 20000
max_vocabulary_size = 10000
size = 512
num_layers = 2
max_gradient_norm = 5.0
batch_size = 64
learning_rate = 0.5
learning_rate_decay_factor = 0.99
use_lstm = False
use_rms_prop = False
class DefaultMovieDialogConfig():
buckets = [(10, 10), (15, 15), (20, 20), (40, 40)]
steps_per_checkpoint = 100
max_steps = 20000
# The OOV resolution scheme used in decode() allows us to use a much smaller
# vocabulary.
max_vocabulary_size = 2000
size = 512
num_layers = 4
max_gradient_norm = 5.0
batch_size = 64
learning_rate = 0.5
learning_rate_decay_factor = 0.99
use_lstm = True
use_rms_prop = False
projection_bias = 0.0
def create_model(session, forward_only, model_path, config=TestConfig()):
"""Create translation model and initialize or load parameters in session."""
model = TextCorrectorModel(
config.max_vocabulary_size,
config.max_vocabulary_size,
config.buckets,
config.size,
config.num_layers,
config.max_gradient_norm,
config.batch_size,
config.learning_rate,
config.learning_rate_decay_factor,
use_lstm=config.use_lstm,
forward_only=forward_only,
config=config)
ckpt = tf.train.get_checkpoint_state(model_path)
if ckpt and tf.gfile.Exists(ckpt.model_checkpoint_path):
print("Reading model parameters from %s" % ckpt.model_checkpoint_path)
model.saver.restore(session, ckpt.model_checkpoint_path)
else:
print("Created model with fresh parameters.")
session.run(tf.initialize_all_variables())
return model
def train(data_reader, train_path, test_path, model_path):
""""""
print(
"Reading data; train = {}, test = {}".format(train_path, test_path))
config = data_reader.config
train_data = data_reader.build_dataset(train_path)
test_data = data_reader.build_dataset(test_path)
with tf.Session() as sess:
# Create model.
print(
"Creating %d layers of %d units." % (
config.num_layers, config.size))
model = create_model(sess, False, model_path, config=config)
# Read data into buckets and compute their sizes.
train_bucket_sizes = [len(train_data[b]) for b in
range(len(config.buckets))]
print("Training bucket sizes: {}".format(train_bucket_sizes))
train_total_size = float(sum(train_bucket_sizes))
print("Total train size: {}".format(train_total_size))
# A bucket scale is a list of increasing numbers from 0 to 1 that
# we'll use to select a bucket. Length of [scale[i], scale[i+1]] is
# proportional to the size if i-th training bucket, as used later.
train_buckets_scale = [
sum(train_bucket_sizes[:i + 1]) / train_total_size
for i in range(len(train_bucket_sizes))]
# This is the training loop.
step_time, loss = 0.0, 0.0
current_step = 0
previous_losses = []
while current_step < config.max_steps:
# Choose a bucket according to data distribution. We pick a random
# number in [0, 1] and use the corresponding interval in
# train_buckets_scale.
random_number_01 = np.random.random_sample()
bucket_id = min([i for i in range(len(train_buckets_scale))
if train_buckets_scale[i] > random_number_01])
# Get a batch and make a step.
start_time = time.time()
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
train_data, bucket_id)
_, step_loss, _ = model.step(sess, encoder_inputs, decoder_inputs,
target_weights, bucket_id, False)
step_time += (time.time() - start_time) / config \
.steps_per_checkpoint
loss += step_loss / config.steps_per_checkpoint
current_step += 1
# Once in a while, we save checkpoint, print statistics, and run
# evals.
if current_step % config.steps_per_checkpoint == 0:
# Print statistics for the previous epoch.
perplexity = math.exp(float(loss)) if loss < 300 else float(
"inf")
print("global step %d learning rate %.4f step-time %.2f "
"perplexity %.2f" % (
model.global_step.eval(), model.learning_rate.eval(),
step_time, perplexity))
# Decrease learning rate if no improvement was seen over last
# 3 times.
if len(previous_losses) > 2 and loss > max(
previous_losses[-3:]):
sess.run(model.learning_rate_decay_op)
previous_losses.append(loss)
# Save checkpoint and zero timer and loss.
checkpoint_path = os.path.join(model_path, "translate.ckpt")
model.saver.save(sess, checkpoint_path,
global_step=model.global_step)
step_time, loss = 0.0, 0.0
# Run evals on development set and print their perplexity.
for bucket_id in range(len(config.buckets)):
if len(test_data[bucket_id]) == 0:
print(" eval: empty bucket %d" % (bucket_id))
continue
encoder_inputs, decoder_inputs, target_weights = \
model.get_batch(test_data, bucket_id)
_, eval_loss, _ = model.step(sess, encoder_inputs,
decoder_inputs,
target_weights, bucket_id,
True)
eval_ppx = math.exp(
float(eval_loss)) if eval_loss < 300 else float(
"inf")
print(" eval: bucket %d perplexity %.2f" % (
bucket_id, eval_ppx))
sys.stdout.flush()
def get_corrective_tokens(data_reader, train_path):
# TODO: this should be part of the model, learned during training
corrective_tokens = set()
for source_tokens, target_tokens in data_reader.read_samples_by_string(
train_path):
corrective_tokens.update(set(target_tokens) - set(source_tokens))
return corrective_tokens
def decode(sess, model, data_reader, data_to_decode, corrective_tokens=set(),
verbose=True):
"""
:param sess:
:param model:
:param data_reader:
:param data_to_decode: an iterable of token lists representing the input
data we want to decode
:param corrective_tokens
:param verbose:
:return:
"""
model.batch_size = 1
corrective_tokens_mask = np.zeros(model.target_vocab_size)
corrective_tokens_mask[EOS_ID] = 1.0
for token in corrective_tokens:
corrective_tokens_mask[data_reader.convert_token_to_id(token)] = 1.0
for tokens in data_to_decode:
token_ids = [data_reader.convert_token_to_id(token) for token in tokens]
# Which bucket does it belong to?
matching_buckets = [b for b in range(len(model.buckets))
if model.buckets[b][0] > len(token_ids)]
if not matching_buckets:
# The input string has more tokens than the largest bucket, so we
# have to skip it.
continue
bucket_id = min(matching_buckets)
# Get a 1-element batch to feed the sentence to the model.
encoder_inputs, decoder_inputs, target_weights = model.get_batch(
{bucket_id: [(token_ids, [])]}, bucket_id)
# Get output logits for the sentence.
_, _, output_logits = model.step(
sess, encoder_inputs, decoder_inputs, target_weights, bucket_id,
True, corrective_tokens=corrective_tokens_mask)
oov_input_tokens = [token for token in tokens if
data_reader.is_unknown_token(token)]
outputs = []
next_oov_token_idx = 0
for logit in output_logits:
max_likelihood_token_id = int(np.argmax(logit, axis=1))
# First check to see if this logit most likely points to the EOS
# identifier.
if max_likelihood_token_id == EOS_ID:
break
token = data_reader.convert_id_to_token(max_likelihood_token_id)
if data_reader.is_unknown_token(token):
# Replace the "unknown" token with the most probable OOV
# token from the input.
if next_oov_token_idx < len(oov_input_tokens):
# If we still have OOV input tokens available,
# pick the next available one.
token = oov_input_tokens[next_oov_token_idx]
# Advance to the next OOV input token.
next_oov_token_idx += 1
else:
# If we've already used all OOV input tokens,
# then we just leave the token as "UNK"
pass
outputs.append(token)
if verbose:
decoded_sentence = " ".join(outputs)
print("Input: {}".format(" ".join(tokens)))
print("Output: {}\n".format(decoded_sentence))
yield outputs
def decode_sentence(sess, model, data_reader, sentence, corrective_tokens=set(),
verbose=True):
"""Used with InteractiveSession in an IPython notebook."""
return next(decode(sess, model, data_reader, [sentence.split()],
corrective_tokens=corrective_tokens, verbose=verbose))
def evaluate_accuracy(sess, model, data_reader, corrective_tokens, test_path,
max_samples=None):
"""Evaluates the accuracy and BLEU score of the given model."""
import nltk # Loading here to avoid having to bundle it in lambda.
# Build a collection of "baseline" and model-based hypotheses, where the
# baseline is just the (potentially errant) source sequence.
baseline_hypotheses = defaultdict(list) # The model's input
model_hypotheses = defaultdict(list) # The actual model's predictions
targets = defaultdict(list) # Groundtruth
errors = []
n_samples_by_bucket = defaultdict(int)
n_correct_model_by_bucket = defaultdict(int)
n_correct_baseline_by_bucket = defaultdict(int)
n_samples = 0
# Evaluate the model against all samples in the test data set.
for source, target in data_reader.read_samples_by_string(test_path):
matching_buckets = [i for i, bucket in enumerate(model.buckets) if
len(source) < bucket[0]]
if not matching_buckets:
continue
bucket_id = matching_buckets[0]
decoding = next(
decode(sess, model, data_reader, [source],
corrective_tokens=corrective_tokens, verbose=False))
model_hypotheses[bucket_id].append(decoding)
if decoding == target:
n_correct_model_by_bucket[bucket_id] += 1
else:
errors.append((decoding, target))
baseline_hypotheses[bucket_id].append(source)
if source == target:
n_correct_baseline_by_bucket[bucket_id] += 1
# nltk.corpus_bleu expects a list of one or more reference
# tranlsations per sample, so we wrap the target list in another list
# here.
targets[bucket_id].append([target])
n_samples_by_bucket[bucket_id] += 1
n_samples += 1
if max_samples is not None and n_samples > max_samples:
break
# Measure the corpus BLEU score and accuracy for the model and baseline
# across all buckets.
for bucket_id in targets.keys():
baseline_bleu_score = nltk.translate.bleu_score.corpus_bleu(
targets[bucket_id], baseline_hypotheses[bucket_id])
model_bleu_score = nltk.translate.bleu_score.corpus_bleu(
targets[bucket_id], model_hypotheses[bucket_id])
print("Bucket {}: {}".format(bucket_id, model.buckets[bucket_id]))
print("\tBaseline BLEU = {:.4f}\n\tModel BLEU = {:.4f}".format(
baseline_bleu_score, model_bleu_score))
print("\tBaseline Accuracy: {:.4f}".format(
1.0 * n_correct_baseline_by_bucket[bucket_id] /
n_samples_by_bucket[bucket_id]))
print("\tModel Accuracy: {:.4f}".format(
1.0 * n_correct_model_by_bucket[bucket_id] /
n_samples_by_bucket[bucket_id]))
return errors
def main(_):
# Determine which config we should use.
if FLAGS.config == "TestConfig":
config = TestConfig()
elif FLAGS.config == "DefaultMovieDialogConfig":
config = DefaultMovieDialogConfig()
elif FLAGS.config == "DefaultPTBConfig":
config = DefaultPTBConfig()
else:
raise ValueError("config argument not recognized; must be one of: "
"TestConfig, DefaultPTBConfig, "
"DefaultMovieDialogConfig")
# Determine which kind of DataReader we want to use.
if FLAGS.data_reader_type == "MovieDialogReader":
data_reader = MovieDialogReader(config, FLAGS.train_path)
elif FLAGS.data_reader_type == "PTBDataReader":
data_reader = PTBDataReader(config, FLAGS.train_path)
else:
raise ValueError("data_reader_type argument not recognized; must be "
"one of: MovieDialogReader, PTBDataReader")
if FLAGS.decode:
# Decode test sentences.
with tf.Session() as session:
model = create_model(session, True, FLAGS.model_path, config=config)
print("Loaded model. Beginning decoding.")
decodings = decode(session, model=model, data_reader=data_reader,
data_to_decode=data_reader.read_tokens(
FLAGS.test_path), verbose=False)
# Write the decoded tokens to stdout.
for tokens in decodings:
print(" ".join(tokens))
sys.stdout.flush()
else:
print("Training model.")
train(data_reader, FLAGS.train_path, FLAGS.val_path, FLAGS.model_path)
if __name__ == "__main__":
tf.app.run()