-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathstart_api.py
315 lines (252 loc) · 11 KB
/
start_api.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
import os
import json
from typing import List, Dict
import colorama
from colorama import Fore, Style
from fastapi import FastAPI, HTTPException, Query
from datasets import Dataset, concatenate_datasets
import uvicorn
from txtai.embeddings import Embeddings
from collections import Counter
import re
# Correcting an issue in Windows
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE"
WIKI_DATASET_DIR = os.path.join("wiki-dataset", "train")
TXT_AI_DIR = "txtai-wikipedia"
DICTIONARY_FILE = "title_to_index.json"
CONFIG_FILE = "config.json"
def load_config():
"""Load the configuration from the JSON file."""
with open(CONFIG_FILE, 'r') as f:
return json.load(f)
def load_wiki_dataset():
"""Load the Wikipedia dataset."""
arrow_files = [os.path.join(WIKI_DATASET_DIR, f) for f in os.listdir(WIKI_DATASET_DIR) if f.endswith('.arrow')]
datasets = [Dataset.from_file(file) for file in arrow_files]
return concatenate_datasets(datasets)
def load_title_to_index(ds):
"""Load or create the title to index mapping."""
if os.path.exists(DICTIONARY_FILE):
with open(DICTIONARY_FILE, 'r') as f:
return json.load(f)
else:
title_to_index = {record['title']: i for i, record in enumerate(ds)}
with open(DICTIONARY_FILE, 'w') as f:
json.dump(title_to_index, f)
return title_to_index
# Load configuration
config = load_config()
host = config.get("host", "0.0.0.0")
port = config.get("port", 5728)
verbose = config.get("verbose", False)
log_level = "info" if verbose else "warning"
# Load datasets and mappings
ds = load_wiki_dataset()
title_to_index = load_title_to_index(ds)
# Initialize FastAPI app
app = FastAPI()
# Initialize txtai embeddings
embeddings = Embeddings()
embeddings.load(path=TXT_AI_DIR)
def escape_sql_string(s) -> str:
s = s.replace("'", "")
s = s.replace("\"", "")
s = s.replace(";", "")
return s
@app.get("/articles/{title}")
async def get_full_article_by_title(title: str):
"""Get the full article by title."""
title = escape_sql_string(title)
index = title_to_index.get(title)
if index is not None:
record = ds[index]
return {"title": record["title"], "text": record["text"]}
else:
raise HTTPException(status_code=404, detail=f"No record found with title {title}")
@app.get("/summaries")
async def get_wiki_summary_by_prompt(
prompt: str = Query(..., description="Search prompt"),
percentile: float = Query(0.5, description="Percentile for search relevance"),
num_results: int = Query(5, description="Number of results to return")
):
prompt = escape_sql_string(prompt)
"""Get wiki summaries by search prompt."""
search_query = f"SELECT id, title, text FROM txtai WHERE similar('{prompt}') and percentile >= {percentile}"
try:
results = embeddings.search(search_query, num_results)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Search error: {e}")
if not results:
raise HTTPException(status_code=404, detail="No results found for prompt")
summaries = []
for result in results:
index = title_to_index.get(result['id'])
if index is not None:
record = ds[index]
summary_text = record["text"][:500] # Return a summary snippet of the first 500 characters
summaries.append({"title": record["title"], "text": summary_text})
else:
raise HTTPException(status_code=404, detail=f"No record found with title {result['id']}")
return summaries
@app.get("/articles")
async def get_full_wiki_articles_by_prompt(
prompt: str = Query(..., description="Search prompt"),
percentile: float = Query(0.5, description="Percentile for search relevance"),
num_results: int = Query(5, description="Number of results to return")
):
"""Get full wiki articles by search prompt."""
prompt = escape_sql_string(prompt)
search_query = f"SELECT id FROM txtai WHERE similar('{prompt}') and percentile >= {percentile}"
try:
results = embeddings.search(search_query, num_results)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Search error: {e}")
if not results:
raise HTTPException(status_code=404, detail="No results found for prompt")
articles = []
for result in results:
title_id = result['id']
index = title_to_index.get(title_id)
if index is not None:
record = ds[index]
articles.append({"title": record["title"], "text": record["text"]})
else:
raise HTTPException(status_code=404, detail=f"No record found with title {title_id}")
return articles
@app.get("/top_article")
async def get_top_full_article_by_prompt(
prompt: str = Query(..., description="Search prompt"),
percentile: float = Query(0.5, description="Percentile for search relevance"),
num_results: int = Query(5, description="Number of results to return")
):
prompt = escape_sql_string(prompt)
"""Get the top wiki article by search prompt."""
search_query = f"SELECT id, text FROM txtai WHERE similar('{prompt}') and percentile >= {percentile}"
try:
results = embeddings.search(search_query, num_results)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Search error: {e}")
if not results:
raise HTTPException(status_code=404, detail="No results found for prompt")
articles = []
for result in results:
index = title_to_index.get(result['id'])
if index is not None:
record = ds[index]
article_text = record["text"]
articles.append({"title": record["title"], "text": article_text})
else:
raise HTTPException(status_code=404, detail=f"No record found with title {result['id']}")
best_article = select_best_wikipedia_article(prompt, articles)
if best_article:
return best_article
else:
raise HTTPException(status_code=404, detail="No suitable article found")
@app.get("/top_n_articles")
async def get_top_n_full_articles_by_prompt(
prompt: str = Query(..., description="Search prompt"),
percentile: float = Query(0.5, description="Percentile for search relevance"),
num_results: int = Query(20, description="Number of results to return"),
num_top_articles: int = Query(8, description="number of top articles to return")
):
prompt = escape_sql_string(prompt)
"""Get the top N wiki articles by search prompt."""
search_query = f"SELECT id, text FROM txtai WHERE similar('{prompt}') and percentile >= {percentile}"
try:
results = embeddings.search(search_query, num_results)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Search error: {e}")
if not results:
raise HTTPException(status_code=404, detail="No results found for prompt")
articles = []
for result in results:
index = title_to_index.get(result['id'])
if index is not None:
record = ds[index]
article_text = record["text"]
articles.append({"title": record["title"], "text": article_text})
else:
raise HTTPException(status_code=404, detail=f"No record found with title {result['id']}")
top_n_articles = select_top_n_wikipedia_articles(prompt, articles, num_top_articles)
if top_n_articles:
return top_n_articles
else:
raise HTTPException(status_code=404, detail="No suitable article found")
def select_best_wikipedia_article(prompt: str, articles: List[Dict[str, str]]) -> Dict[str, str]:
"""
Select the best matching article based on the prompt, accounting for token frequencies.
Args:
prompt (str): The original prompt.
articles (list): List of dictionaries with 'title' and 'text'.
Returns:
dict: The article dictionary with the highest similarity score.
"""
def tokenize(text):
return re.findall(r'\w+', text.lower())
prompt_tokens = tokenize(prompt)
prompt_counter = Counter(prompt_tokens)
best_score = -1
best_article = None
for article in articles:
title_tokens = tokenize(article.get('title', ''))
text_tokens = tokenize(article.get('text', ''))
title_counter = Counter(title_tokens)
text_counter = Counter(text_tokens)
title_overlap = sum((prompt_counter & title_counter).values())
text_overlap = sum((prompt_counter & text_counter).values())
# Assign weights (title matches are more significant)
score = title_overlap * 2 + text_overlap
if verbose:
print(f"Article Title: {article.get('title', '')}")
print(f"Title Overlap Count: {title_overlap}, Text Overlap Count: {text_overlap}, Score: {score}")
if score > best_score:
best_score = score
best_article = article
return best_article
def select_top_n_wikipedia_articles(prompt: str, articles: List[Dict[str, str]], num_top_articles: int) -> List[Dict[str, str]]:
"""
Select the top_n articles based on the prompt, accounting for token frequencies.
Args:
prompt (str): The original prompt.
articles (list): List of dictionaries with 'title' and 'text'.
num_top_articles (int): The number of top articles to return.
Returns:
List of dict: The articles dictionaries with the highest similarity score.
"""
def tokenize(text):
return re.findall(r'\w+', text.lower())
prompt_tokens = tokenize(prompt)
prompt_counter = Counter(prompt_tokens)
best_score = -1
best_article = None
scored_articles = []
for article in articles:
title_tokens = tokenize(article.get('title', ''))
text_tokens = tokenize(article.get('text', ''))
title_counter = Counter(title_tokens)
text_counter = Counter(text_tokens)
title_overlap = sum((prompt_counter & title_counter).values())
text_overlap = sum((prompt_counter & text_counter).values())
# Assign weights (title matches are more significant)
score = title_overlap * 2 + text_overlap
if verbose:
print(f"Article Title: {article.get('title', '')}")
print(f"Title Overlap Count: {title_overlap}, Text Overlap Count: {text_overlap}, Score: {score}")
scored_articles.append((score, article))
# Sort articles by score in descending order and select the top_n articles
scored_articles.sort(reverse=True, key=lambda x: x[0])
top_n_articles = [article for score, article in scored_articles[:num_top_articles]]
return top_n_articles
if __name__ == "__main__":
colorama.init(autoreset=True)
print("---------------------------------------------------------------")
print("API started!")
print(f"Host: {Fore.CYAN}{host}")
print(f"Port: {Fore.CYAN}{port}")
if log_level == "info":
log_color = Fore.GREEN
else:
log_color = Fore.YELLOW
print(f"Log level: {log_color}{log_level}")
print(f"Please {Fore.RED}ctrl + c{Style.RESET_ALL} to end")
uvicorn.run(app, host=host, port=port, log_level=log_level)