forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpipeline.py
78 lines (69 loc) ยท 3.03 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ## Task: Speech Command Analysis for Audio Expense Claim
#
# Structured information entry is a common application scenario of speech
# command analysis, where we can extract expected keywords from audios in
# an end-to-end way. This technique can economize on manpower and reduce
# error rates.
import argparse
import json
import os
import pprint
from tqdm import tqdm
from utils import mandarin_asr_api
from paddlenlp import Taskflow
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--audio_file", type=str, required=True, help="The audio file name.")
parser.add_argument("--api_key", type=str, required=True, help="The app key applied on Baidu AI Platform.")
parser.add_argument(
"--secret_key", type=str, required=True, help="The app secret key generated on Baidu AI Platform."
)
parser.add_argument("--uie_model", type=str, default=None, help="The path to uie model.")
parser.add_argument(
"--schema",
type=str,
nargs="+",
default=["ๆถ้ด", "ๅบๅๅฐ", "็ฎ็ๅฐ", "่ดน็จ"],
help="The type of entities expected to extract.",
)
parser.add_argument(
"--save_file", type=str, default="./uie_results.txt", help="The path to save the recognised text and schemas."
)
args = parser.parse_args()
if os.path.isfile(args.audio_file):
audios = [args.audio_file]
elif os.path.isdir(args.audio_file):
audios = [x for x in os.listdir(args.audio_file)]
audios = [os.path.join(args.audio_file, x) for x in audios]
else:
raise Exception("%s is neither valid path nor file!" % args.audio_file)
audios = [x for x in audios if x.endswith(".wav")]
if len(audios) == 0:
raise Exception("No valid .wav file! Please check %s." % args.audio_file)
if args.uie_model is None:
parser = Taskflow("information_extraction", schema=args.schema)
else:
parser = Taskflow("information_extraction", schema=args.schema, task_path=args.uie_model)
with open(args.save_file, "w") as fp:
for audio_file in tqdm(audios):
# automatic speech recognition
text = mandarin_asr_api(args.api_key, args.secret_key, audio_file)
# extract entities according to schema
result = parser(text)
fp.write(text + "\n")
fp.write(json.dumps(result, ensure_ascii=False) + "\n\n")
print(text)
pprint.pprint(result)