forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinetune.py
127 lines (103 loc) Β· 5.75 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import os
import time
from functools import partial
import paddle
from utils import convert_example, create_dataloader, evaluate, reader, set_seed
from paddlenlp.datasets import load_dataset
from paddlenlp.metrics import SpanEvaluator
from paddlenlp.transformers import UIE, AutoTokenizer
def do_train():
paddle.set_device(args.device)
rank = paddle.distributed.get_rank()
if paddle.distributed.get_world_size() > 1:
paddle.distributed.init_parallel_env()
set_seed(args.seed)
tokenizer = AutoTokenizer.from_pretrained(args.model)
model = UIE.from_pretrained(args.model)
if args.init_from_ckpt and os.path.isfile(args.init_from_ckpt):
state_dict = paddle.load(args.init_from_ckpt)
model.set_dict(state_dict)
if paddle.distributed.get_world_size() > 1:
model = paddle.DataParallel(model)
train_ds = load_dataset(reader, data_path=args.train_path, max_seq_len=args.max_seq_len, lazy=False)
dev_ds = load_dataset(reader, data_path=args.dev_path, max_seq_len=args.max_seq_len, lazy=False)
trans_func = partial(convert_example, tokenizer=tokenizer, max_seq_len=args.max_seq_len)
train_data_loader = create_dataloader(
dataset=train_ds, mode="train", batch_size=args.batch_size, trans_fn=trans_func
)
dev_data_loader = create_dataloader(dataset=dev_ds, mode="dev", batch_size=args.batch_size, trans_fn=trans_func)
optimizer = paddle.optimizer.AdamW(learning_rate=args.learning_rate, parameters=model.parameters())
criterion = paddle.nn.BCELoss()
metric = SpanEvaluator()
loss_list = []
global_step = 0
best_f1 = 0
tic_train = time.time()
for epoch in range(1, args.num_epochs + 1):
for batch in train_data_loader:
input_ids, token_type_ids, att_mask, pos_ids, start_ids, end_ids = batch
start_prob, end_prob = model(input_ids, token_type_ids, att_mask, pos_ids)
start_ids = paddle.cast(start_ids, "float32")
end_ids = paddle.cast(end_ids, "float32")
loss_start = criterion(start_prob, start_ids)
loss_end = criterion(end_prob, end_ids)
loss = (loss_start + loss_end) / 2.0
loss.backward()
optimizer.step()
optimizer.clear_grad()
loss_list.append(float(loss))
global_step += 1
if global_step % args.logging_steps == 0 and rank == 0:
time_diff = time.time() - tic_train
loss_avg = sum(loss_list) / len(loss_list)
print(
"global step %d, epoch: %d, loss: %.5f, speed: %.2f step/s"
% (global_step, epoch, loss_avg, args.logging_steps / time_diff)
)
tic_train = time.time()
if global_step % args.valid_steps == 0 and rank == 0:
save_dir = os.path.join(args.save_dir, "model_%d" % global_step)
if not os.path.exists(save_dir):
os.makedirs(save_dir)
model.save_pretrained(save_dir)
precision, recall, f1 = evaluate(model, metric, dev_data_loader)
print("Evaluation precision: %.5f, recall: %.5f, F1: %.5f" % (precision, recall, f1))
if f1 > best_f1:
print(f"best F1 performence has been updated: {best_f1:.5f} --> {f1:.5f}")
best_f1 = f1
save_dir = os.path.join(args.save_dir, "model_best")
model.save_pretrained(save_dir)
tic_train = time.time()
if __name__ == "__main__":
# yapf: disable
parser = argparse.ArgumentParser()
parser.add_argument("--batch_size", default=16, type=int, help="Batch size per GPU/CPU for training.")
parser.add_argument("--learning_rate", default=1e-5, type=float, help="The initial learning rate for Adam.")
parser.add_argument("--train_path", default=None, type=str, help="The path of train set.")
parser.add_argument("--dev_path", default=None, type=str, help="The path of dev set.")
parser.add_argument("--save_dir", default='./checkpoint', type=str, help="The output directory where the model checkpoints will be written.")
parser.add_argument("--max_seq_len", default=512, type=int, help="The maximum input sequence length. ")
parser.add_argument("--num_epochs", default=100, type=int, help="Total number of training epochs to perform.")
parser.add_argument("--seed", default=1000, type=int, help="Random seed for initialization")
parser.add_argument("--logging_steps", default=10, type=int, help="The interval steps to logging.")
parser.add_argument("--valid_steps", default=100, type=int, help="The interval steps to evaluate model performance.")
parser.add_argument('--device', choices=['cpu', 'gpu'], default="gpu", help="Select which device to train model, defaults to gpu.")
parser.add_argument("--model", choices=["uie-base", "uie-tiny"], default="uie-base", type=str, help="Select the pretrained model for few-shot learning.")
parser.add_argument("--init_from_ckpt", default=None, type=str, help="The path of model parameters for initialization.")
args = parser.parse_args()
# yapf: enable
do_train()