-
Notifications
You must be signed in to change notification settings - Fork 0
/
cpt_evaluation.py
110 lines (92 loc) · 3.69 KB
/
cpt_evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
"""
evaluate the changedetection method on a given dataset
"""
import pandas as pd
import os
from localutils import changedetect as dc, benchmark as bch
import logging
import ConfigParser
import traceback
import multiprocessing
import argparse
METHOD = ['cpt_normal', 'cpt_poisson', 'cpt_poisson_naive', 'cpt_exp', 'cpt_gamma', 'cpt_np']
PENALTY = ["AIC", "BIC", "MBIC", "Hannan-Quinn"]
WINDOW = 2 # perform evaluation with window size equaling 2
MINSEGLEN = 3
def worker(f):
f_base = os.path.basename(f)
r = []
logging.info("handling %s" % f)
trace = pd.read_csv(f, sep=';')
if type(trace['rtt'][0]) is str:
trace = pd.read_csv(f, sep=';', decimal=',')
fact = trace['cp']
fact = [i for i, v in enumerate(fact) if v == 1] # fact in format of data index
logging.debug("%s : change counts %d" % (f_base, len(fact)))
for m, p in [(x, y) for x in METHOD for y in PENALTY]:
logging.info("%s: evaluating %s with %s" % (f_base, m, p))
method_caller = getattr(dc, m)
detect = method_caller(trace['rtt'], p, MINSEGLEN)
b = bch.evaluation_window_weighted(trace['rtt'], fact, detect, WINDOW)
r.append((os.path.basename(f), len(trace), len(fact),
b['tp'], b['fp'], b['fn'],
b['precision'], b['recall'], b['score'], b['dis'], m, p))
logging.debug('%r' % b)
return r
def worker_wrapper(args):
try:
return worker(args)
except Exception:
logging.critical("Exception in worker.")
traceback.print_exc()
raise
def main():
# logging setting
logging.basicConfig(filename='cpt_evaluation.log', level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S %z')
# load data collection configuration from config file in the same folder
config = ConfigParser.ConfigParser()
if not config.read('./config'):
logging.critical("Config file ./config is missing.")
return
# load the configured directory where collected data shall be saved
try:
data_dir = config.get("dir", "data")
except (ConfigParser.NoSectionError, ConfigParser.NoOptionError):
logging.critical("config for data storage is not right.")
return
# check if the directory is there
if not os.path.exists(data_dir):
logging.critical("data folder %s does not exisit." % data_dir)
return
parser = argparse.ArgumentParser()
parser.add_argument("-d", "--directory",
help="benchmark changepoint methods using the traces from the specified directory.",
action="store")
parser.add_argument("-f", "--filename",
help="file name for output.",
action="store")
args = parser.parse_args()
if not args.directory or not args.filename:
print args.help
return
else:
trace_dir = args.directory
outfile = args.filename
if not os.path.exists(trace_dir):
print "%s doesn't existe." % trace_dir
files = []
for f in os.listdir(trace_dir):
if f.endswith('.csv') and not f.startswith('~'):
files.append(os.path.join(trace_dir,f))
pool = multiprocessing.Pool(processes=multiprocessing.cpu_count())
res = pool.map(worker_wrapper, files)
with open(os.path.join(data_dir, outfile), 'w') as fp:
fp.write(';'.join(
['file', 'len', 'changes', 'tp', 'fp', 'fn', 'precision', 'recall', 'score', 'dis', 'method', 'penalty']) + '\n')
for ck in res:
for line in ck:
fp.write(";".join([str(i) for i in line]) + '\n')
if __name__ == '__main__':
main()