-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathc_shelph.py
332 lines (230 loc) · 12.9 KB
/
c_shelph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
import numpy as np
import pandas as pd
import copy
def bin_data(dataset, lat_res, height_res):
'''Bin data along vertical and horizontal scales for later segmentation'''
# Calculate number of bins required both vertically and horizontally with resolution size
lat_bin_number = round(abs(dataset['lat_ph'].min() - dataset['lat_ph'].max())/lat_res)
height_bin_number = round(abs(dataset['photon_height'].min() - dataset['photon_height'].max())/height_res)
# Duplicate dataframe
dataset1 = dataset
pd.options.mode.chained_assignment = None
# Cut lat bins
lat_bins = pd.cut(dataset['lat_ph'], lat_bin_number, labels = np.array(range(lat_bin_number)))
# Add bins to dataframe
dataset1['lat_bins'] = lat_bins
dataset1['median_sea_surf'] = dataset1.groupby('lat_bins', observed=True)['photon_height'].transform('median')
dataset1['median_sea_surf'] = dataset1['median_sea_surf'].fillna(dataset1['median_sea_surf'].median())
# Cut height bins
height_bins = pd.cut(dataset['photon_height'],
height_bin_number,
labels = np.round(np.linspace(dataset['photon_height'].min(),
dataset['photon_height'].max(),
num=height_bin_number), decimals = 1))
# pd.options.mode.chained_assignment = None
# Add height bins to dataframe
dataset1['height_bins'] = height_bins
dataset1 = dataset1.reset_index(drop=True)
return dataset1
def get_bath_height(binned_data, percentile, height_resolution, min_photons_per_bin=5):
"""
Calculates the bathymetry level (depth) for each bin in a 2D grid based on
photon counts and a specified percentile threshold.
"""
# Create sea height list
bath_height = []
geo_index_ph = []
geo_temp_ind = []
geo_med_surf = []
geo_photon_height = []
geo_longitude = []
geo_latitude = []
global_median_sea_surf = binned_data['median_sea_surf'].median()
# Group data by latitude
# Filter out surface data that are two bins below median surface value calculated above
binned_data_bathy_list = []
for group in binned_data.groupby(['lat_bins'], observed=True):
med_sea_surf_group = group[1]['median_sea_surf'].median()
if np.isnan(med_sea_surf_group):
med_sea_surf_group = global_median_sea_surf
binned_data_bath = group[1][(group[1]['photon_height'] < med_sea_surf_group - (height_resolution * 2))]
binned_data_bathy_list.append(binned_data_bath)
binned_data_bath = pd.concat(binned_data_bathy_list)
grouped_data = binned_data_bath.groupby(['lat_bins'], group_keys=True, observed=True)
data_groups = dict(list(grouped_data))
# Create a percentile threshold of photon counts in each grid, grouped by both x and y axes.
# count_threshold = np.percentile(binned_data.groupby(['lat_bins',
# 'height_bins']).size().reset_index().groupby('lat_bins')[[0]].max(),
# percentile)
counts_in_bins = []
# Loop through groups and return average bathy height
for k,v in data_groups.items():
new_df = pd.DataFrame(v.groupby('height_bins').count())
if not new_df.empty:
bath_bin = new_df['lat_ph'].argmax()
bath_bin_h = new_df.index[bath_bin]
counts_in_bins.append(new_df.iloc[bath_bin]['lat_ph'])
counts_in_bins = np.asarray(counts_in_bins)
cib_thresh_85 = np.percentile(counts_in_bins, 85)
cib_thresh_user = np.percentile(counts_in_bins, percentile)
if cib_thresh_85 == cib_thresh_user:
print('Likely No bathymetry, normal distribution of photons.')
if cib_thresh_85 <= min_photons_per_bin:
print('C-Shelph too few photons per bin. Setting min photons to ' + str(min_photons_per_bin) + '.')
counts_in_bins_thresh = min_photons_per_bin
else:
counts_in_bins_thresh = cib_thresh_user
else:
if cib_thresh_user <= min_photons_per_bin:
print('C-Shelph too few photons per bin. Setting min photons to ' + str(min_photons_per_bin) + '.')
counts_in_bins_thresh = min_photons_per_bin
else:
counts_in_bins_thresh = cib_thresh_user
print('C-Shelph, using lower thresh.')
# Loop through groups and return average bathy height
for k,v in data_groups.items():
new_df = pd.DataFrame(v.groupby('height_bins').count())
if not new_df.empty:
# print('new_df: ', new_df)
bath_bin = new_df['lat_ph'].argmax()
bath_bin_h = new_df.index[bath_bin]
# Set threshold of photon counts per bin
if new_df.iloc[bath_bin]['lat_ph'] >= counts_in_bins_thresh:
geo_photon_height.append(v.loc[v['height_bins']==bath_bin_h, 'photon_height'].values)
geo_longitude.append(v.loc[v['height_bins']==bath_bin_h, 'lon_ph'].values)
geo_latitude.append(v.loc[v['height_bins']==bath_bin_h, 'lat_ph'].values)
geo_index_ph.append(v.loc[v['height_bins']==bath_bin_h, 'index_ph'].values)
geo_temp_ind.append(v.loc[v['height_bins']==bath_bin_h, 'temp_index'].values)
geo_med_surf.append(v.loc[v['height_bins']==bath_bin_h, 'median_sea_surf'].values)
bath_bin_median = v.loc[v['height_bins']==bath_bin_h, 'photon_height'].median()
bath_height.append(bath_bin_median)
del new_df
else:
bath_height.append(np.nan)
del new_df
try:
geo_index_ph_list = np.concatenate(geo_index_ph).ravel().tolist()
geo_med_surf_list = np.concatenate(geo_med_surf).ravel().tolist()
geo_temp_ind_list = np.concatenate(geo_temp_ind).ravel().tolist()
geo_longitude_list = np.concatenate(geo_longitude).ravel().tolist()
geo_latitude_list = np.concatenate(geo_latitude).ravel().tolist()
geo_photon_list = np.concatenate(geo_photon_height).ravel().tolist()
# geo_depth = WSHeight - geo_photon_list
geo_df = pd.DataFrame({'index_ph': geo_index_ph_list, 'PC_index': geo_temp_ind_list,'lon_ph': geo_longitude_list,
'lat_ph':geo_latitude_list, 'photon_height': geo_photon_list, 'med_sea_surf': geo_med_surf_list})
del geo_longitude_list, geo_latitude_list, geo_photon_list
return bath_height, geo_df
except Exception as c_shelph_err:
print('c_shelph_err: ', c_shelph_err)
return None, None
def c_shelph_classification(point_cloud, surface_buffer=-0.5,
h_res=0.5, lat_res=0.001,
thresh=20, min_buffer=-80,
max_buffer=5,
min_photons_per_bin=6,
sea_surface_label=None,
bathymetry_label=None):
class_arr = point_cloud['class_ph'].to_numpy()
sea_surface_indices = np.argwhere(class_arr == sea_surface_label).flatten()
# Aggregate data into dataframe
dataset_sea = pd.DataFrame({'index_ph': point_cloud['index_ph'].values,
'temp_index': np.arange(0, (point_cloud.shape[0]), 1),
'lat_ph': point_cloud['lat_ph'].values,
'lon_ph': point_cloud['lon_ph'].values,
'photon_height': point_cloud['geoid_corr_h'],
'classifications': class_arr},
columns=['index_ph', 'temp_index', 'lat_ph', 'lon_ph', 'photon_height', 'classifications'])
# Filter for elevation range
dataset_sea1 = dataset_sea[(dataset_sea['photon_height'] > min_buffer) & (dataset_sea['photon_height'] < max_buffer)]
binned_data_sea = bin_data(dataset_sea1, lat_res, h_res)
binned_data_sea["height_bins"] = pd.to_numeric(binned_data_sea["height_bins"])
_, geo_df = get_bath_height(binned_data_sea, thresh,
h_res,
min_photons_per_bin=min_photons_per_bin)
if geo_df is not None:
# Remove Bathy points without seasurface above.
# sea_surf_lats = dataset_sea['lat_ph'][sea_surface_indices]
# bathy_keep = _array_for_loop(geo_df['lat_ph'].to_numpy(), surf_lats=sea_surf_lats)
# geo_df = geo_df[bathy_keep]
classifications = np.zeros((point_cloud.shape[0]))
classifications[:] = 0
classifications[geo_df['PC_index'].to_numpy()] = bathymetry_label # sea floor
med_water_surface = np.nanmean(geo_df['med_sea_surf'].to_numpy())
unique_bathy_filterlow = np.argwhere(point_cloud['geoid_corr_h'] > (med_water_surface - (h_res * 2.5))).flatten()
classifications[geo_df['PC_index'].to_numpy()] = bathymetry_label
classifications[unique_bathy_filterlow] = 0
classifications[sea_surface_indices] = sea_surface_label # sea surface
results = {'classification': classifications}
return results
else:
classifications = np.zeros((point_cloud.shape[0]))
classifications[:] = 0
classifications[sea_surface_indices] = sea_surface_label # sea surface
results = {'classification': classifications}
return results
def plot_pointcloud(classified_pointcloud=None, output_path=None):
import matplotlib as mpl
from matplotlib import pyplot as plt
ylim_min = -80
ylim_max = 20
xlim_min = 24.5
xlim_max = 25
plt.figure(figsize=(48, 16))
plt.plot(classified_pointcloud['lat_ph'][classified_pointcloud['classifications'] == 0.0],
classified_pointcloud['geoid_corr_h'][classified_pointcloud['classifications'] == 0.0],
'o', color='0.7', label='Other', markersize=2, zorder=1)
plt.plot(classified_pointcloud['lat_ph'][classified_pointcloud['classifications'] == 41.0],
classified_pointcloud['geoid_corr_h'][classified_pointcloud['classifications'] == 41.0],
'o', color='blue', label='Other', markersize=5, zorder=5)
plt.plot(classified_pointcloud['lat_ph'][classified_pointcloud['classifications'] == 40.0],
classified_pointcloud['geoid_corr_h'][classified_pointcloud['classifications'] == 40.0],
'o', color='red', label='Other', markersize=5, zorder=5)
plt.xlabel('Latitude (degrees)', fontsize=36)
plt.xticks(fontsize=34)
plt.ylabel('Height (m)', fontsize=36)
plt.yticks(fontsize=34)
plt.ylim(ylim_min, ylim_max)
# plt.xlim(xlim_min, xlim_max)
plt.title('Final Classifications - ', fontsize=40)
# plt.title(fname + ' ' + channel)
plt.legend(fontsize=36)
# plt.savefig(output_path)
# plt.close()
plt.show()
return
def main(args):
input_fname = args.beam_data_csv
output_label_fname = args.output_data_csv
sea_surface_label = 41
bathymetry_label = 40
point_cloud = pd.read_csv(input_fname)
point_cloud = point_cloud.rename(columns={'manual_label': 'class_ph',
'ph_index': 'index_ph',
'lat_ph': 'lat_ph',
'lon_ph': 'lon_ph',
'geoid_corrected_h': 'geoid_corr_h'})
# Start Bathymetry Classification
c_shelph_results = c_shelph_classification(copy.deepcopy(point_cloud), surface_buffer=-0.5,
h_res=0.5, lat_res=0.001, thresh=25,
min_buffer=-80, max_buffer=5,
min_photons_per_bin=5,
# sea_surface_indices=sea_surface_inds,
sea_surface_label=sea_surface_label,
bathymetry_label=bathymetry_label)
point_cloud['classifications'] = c_shelph_results['classification']
# plot_path = output_label_fname.replace('.csv', '.png')
# plot_pointcloud(classified_pointcloud=point_cloud, output_path=plot_path)
point_cloud.to_csv(output_label_fname)
return
if __name__=="__main__":
import argparse
import sys
parser = argparse.ArgumentParser()
# <configuration json> <beam information json> <beam data csv> <output data csv>
parser.add_argument("--configuration-json")
parser.add_argument("--beam-information-json")
parser.add_argument("--beam-data-csv")
parser.add_argument("--output-data-csv")
args = parser.parse_args()
main(args)
sys.exit(0)