forked from SDXorg/test-models
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathregression-test.py
executable file
·237 lines (208 loc) · 8.01 KB
/
regression-test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#!/usr/bin/env python
import argparse
import cmath
import csv
import os
import os.path
import re
import subprocess
import sys
OUTPUT_FILE = 'output.csv'
# these columns are either Vendor specific or otherwise not important.
IGNORABLE_COLS = ('saveper', 'initial_time', 'final_time', 'time_step')
# from rainbow
def make_reporter(verbosity, quiet, filelike):
"Returns a function suitible for logging use."
if not quiet:
def report(level, msg, *args):
"Log if the specified severity is <= the initial verbosity."
if level <= verbosity:
if len(args):
filelike.write(msg % args + '\n')
else:
filelike.write('%s\n' % (msg,))
else:
def report(level, msg, *args):
"/dev/null logger."
pass
return report
ERROR = 0
WARN = 1
INFO = 2
DEBUG = 3
log = make_reporter(DEBUG, False, sys.stderr)
def isclose(a,
b,
rel_tol=1e-9,
abs_tol=0.0,
method='weak'):
"""
returns True if a is close in value to b. False otherwise
:param a: one of the values to be tested
:param b: the other value to be tested
:param rel_tol=1e-8: The relative tolerance -- the amount of error
allowed, relative to the magnitude of the input
values.
:param abs_tol=0.0: The minimum absolute tolerance level -- useful for
comparisons to zero.
:param method: The method to use. options are:
"asymmetric" : the b value is used for scaling the tolerance
"strong" : The tolerance is scaled by the smaller of
the two values
"weak" : The tolerance is scaled by the larger of
the two values
"average" : The tolerance is scaled by the average of
the two values.
NOTES:
-inf, inf and NaN behave similar to the IEEE 754 standard. That
-is, NaN is not close to anything, even itself. inf and -inf are
-only close to themselves.
Complex values are compared based on their absolute value.
The function can be used with Decimal types, if the tolerance(s) are
specified as Decimals::
isclose(a, b, rel_tol=Decimal('1e-9'))
See PEP-0485 for a detailed description
Copyright: Christopher H. Barker
License: Apache License 2.0 http://opensource.org/licenses/apache2.0.php
"""
if method not in ("asymmetric", "strong", "weak", "average"):
raise ValueError('method must be one of: "asymmetric",'
' "strong", "weak", "average"')
if rel_tol < 0.0 or abs_tol < 0.0:
raise ValueError('error tolerances must be non-negative')
if a == b: # short-circuit exact equality
return True
# use cmath so it will work with complex or float
if cmath.isinf(a) or cmath.isinf(b):
# This includes the case of two infinities of opposite sign, or
# one infinity and one finite number. Two infinities of opposite sign
# would otherwise have an infinite relative tolerance.
return False
diff = abs(b - a)
if method == "asymmetric":
return (diff <= abs(rel_tol * b)) or (diff <= abs_tol)
elif method == "strong":
return (((diff <= abs(rel_tol * b)) and
(diff <= abs(rel_tol * a))) or
(diff <= abs_tol))
elif method == "weak":
return (((diff <= abs(rel_tol * b)) or
(diff <= abs(rel_tol * a))) or
(diff <= abs_tol))
elif method == "average":
return ((diff <= abs(rel_tol * (a + b) / 2) or
(diff <= abs_tol)))
else:
raise ValueError('method must be one of:'
' "asymmetric", "strong", "weak", "average"')
def slurp(file_name):
with open(file_name, 'r') as f:
return f.read().strip()
def load_csv(f, delimiter=','):
result = []
reader = csv.reader(f, delimiter=delimiter)
header = next(reader)
for i in range(len(header)):
result.append([header[i]])
for row in reader:
for i in range(len(row)):
result[i].append(row[i])
series = {}
for i in range(len(result)):
series[result[i][0]] = result[i][1:]
return series
NAME_RE = re.compile(' +')
def e_name(n):
return NAME_RE.sub('_', n)
def read_data(data):
ins = data.lower().splitlines()
ins[0] = e_name(ins[0].strip())
if ',' in ins[0]:
delimiter = ','
else:
delimiter = '\t'
return load_csv(ins, delimiter)
def compare(reference, simulated, display_limit=-1):
'''
Compare two data files for equivalence.
'''
time = reference['time']
steps = len(time)
err = False
displayed = 0
for i in range(steps):
for n, series in list(reference.items()):
if n not in simulated:
if n in IGNORABLE_COLS:
continue
if display_limit >= 0 and displayed < display_limit:
log(ERROR, 'missing column %s in second file', n)
displayed += 1
break
if len(reference[n]) != len(simulated[n]):
if display_limit >= 0 and displayed < display_limit:
log(ERROR, 'len mismatch for %s (%d vs %d)',
n, len(reference[n]), len(simulated[n]))
displayed += 1
err = True
break
ref = float(series[i])
sim = float(simulated[n][i])
around_zero = isclose(ref, 0, abs_tol=1e-06) and isclose(sim, 0, abs_tol=1e-06)
if not around_zero and not isclose(ref, sim, rel_tol=1e-4):
if display_limit >= 0 and displayed < display_limit:
log(ERROR, 'time %s mismatch in %s (%s != %s)', time[i], n, ref, sim)
displayed += 1
err = True
return err
def run_cmd(cmd):
'''
Runs a shell command, waits for it to complete, and returns stdout.
'''
call = subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE,
stderr=subprocess.PIPE)
out, err = call.communicate()
return (call.returncode, out, err)
def run_test(cmd, limit, model_suffix, model_dir):
err = False
models = [f for f in os.listdir(model_dir) if f.endswith(model_suffix)]
if not models:
return err
for m in models:
model_path = os.path.join(model_dir, m)
log(DEBUG, ' RTEST %s', model_path)
err, mdata, cmd_stderr = run_cmd('%s %s' % (cmd, model_path))
if err:
log(ERROR, '%s failed: %s', cmd, cmd_stderr)
continue
elif cmd_stderr:
# if there was any, always pass stderr through
log(ERROR, '%s', cmd_stderr)
sim = read_data(mdata.decode('utf-8'))
output_path = os.path.join(model_dir, OUTPUT_FILE)
ref = read_data(slurp(output_path))
err |= compare(ref, sim, display_limit=limit)
return err
def main():
parser = argparse.ArgumentParser()
parser.add_argument('-e', '--ext', default='xmile',
help='file extension of model to test, such as xmile or mdl')
parser.add_argument('-l', '--limit', default=10, type=int,
help='number of lines of comparison errors to display per ' +
'model, negative to disable')
parser.add_argument('CMD', help='command to run that will output model results to stdout')
parser.add_argument('DIR', help='path to test-models directory')
args = parser.parse_args()
model_suffix = '.' + args.ext
err = False
dirs = [args.DIR]
while dirs:
d = dirs.pop()
for dent in os.listdir(d):
full_path = os.path.join(d, dent)
if not dent.startswith('.') and os.path.isdir(full_path):
dirs.append(full_path)
err |= run_test(args.CMD, args.limit, model_suffix, d)
return err
if __name__ == '__main__':
exit(main())