-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathanimation.py
51 lines (38 loc) · 2.01 KB
/
animation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
import matplotlib.pyplot as plt
import matplotlib.animation as animation
from matplotlib.patches import Ellipse
import numpy as np
from bubbleplot import positions
def update(frame, trajectory, circ_list, radii, ax):
for i in range(len(radii)):
centre = trajectory[frame]
circ = circ_list[i]
circ.set_center((centre[i,0], centre[i,1]))
return ax,
def get_animation(radii, centres, return_traj=True, n_steps=5000, learning_rate=0.0005, rep_const=600):
new_centers, trajectory = positions.optimise_positions(radii, centres, return_traj=return_traj, n_steps=n_steps,
learning_rate=learning_rate, rep_const=rep_const)
radii = np.asarray(radii)
fig, ax = plt.subplots(figsize=(7,7))
ax.set_axis_off()
circ_list = []
for i in range(len(radii)):
circ = Ellipse((centres[i,0], centres[i,1]), width=radii[i]*2, height=radii[i]*2, alpha=0.5)
circ_list.append(circ)
ax.add_patch(circ)
# ax.set_xlim((min(centres[:,0]),max(centres[:,0])))
# ax.set_ylim((min(centres[:,0]),max(centres[:,0])))
ax.set_xlim((min(centres[:, 0]) - max(radii), max(centres[:, 0]) + max(radii)))
ax.set_ylim((min(centres[:, 1]) - max(radii), max(centres[:, 1]) + max(radii)))
frames = list(range(0, len(trajectory), 20))
ani = animation.FuncAnimation(fig, update, frames, init_func=None, blit=False, interval=1,
fargs=(trajectory, circ_list, radii, ax))
## To save the animation uncomment this bit. If it doesnt work, you may need to add the path to the ffmpeg binary
## plt.rcParams['animation.ffmpeg_path'] = '/path/to/bin/ffmpeg'
# writer = animation.FFMpegWriter(fps=30, bitrate=1800)
# ani.save(filename='bubbles.mp4', writer=writer, dpi=100)
plt.show()
if __name__ == "__main__":
radii = tuple(range(1,30))
centres = positions.spawn_bubbles(radii)
get_animation(radii, centres, return_traj=True, n_steps=7000, learning_rate=0.000005, rep_const=2000)