-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset_config.py
119 lines (108 loc) · 4.7 KB
/
dataset_config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import os
import sys
sys.path.append("/home/turx/EvalBase")
import evalbase # be sure that evalbase is in your PYTHONPATH
data_path_root = os.path.join(evalbase.path, "dataloader")
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
# FIXME: What is the line above for?
summeval_config = {
"dataset_name": "summeval",
"human_metrics": ["consistency", "relevance", "coherence", "fluency"],
"docID_column": "id",
"document_column": "ArticleText",
"system_summary_column": "SystemSummary",
"reference_summary_column": "ReferenceSummary_0", # the id ranges from 0 to 10
"is_multi": False, # must be False for SummEval
"data_path": os.path.join(data_path_root, "summeval_annotations.aligned.paired.scored.jsonl"),
"precalc_metrics": [ # keys from original SummEval json file
'rouge_1_precision', 'rouge_1_recall', 'rouge_1_f_score',
'rouge_2_precision', 'rouge_2_recall', 'rouge_2_f_score',
'rouge_l_precision', 'rouge_l_recall', 'rouge_l_f_score',
'rouge_we_1_p', 'rouge_we_1_r', 'rouge_we_1_f',
'rouge_we_2_p', 'rouge_we_2_r', 'rouge_we_2_f',
'meteor', 'cider', 's3_pyr', 's3_resp',
'mover_score', 'sentence_movers_glove_sms', 'bleu',
'bert_score_precision', 'bert_score_recall', 'bert_score_f1',
'blanc', 'summaqa_avg_prob', 'summaqa_avg_fscore', 'supert'],
"debug": False
}
realsumm_abs_config = {
"dataset_name": "realsumm_abs",
"human_metrics": ["litepyramid_recall"],
"docID_column": "doc_id",
"document_column": "ArticleText",
"system_summary_column": "SystemSummary",
"reference_summary_column": "ReferenceSummary",
"data_path": os.path.join(data_path_root, "abs.pkl"), # you need to get this file. See ReadMe.
"result_path_root": "./results/",
"precalc_metrics": ['rouge_1_f_score', 'rouge_2_recall', 'rouge_l_recall', 'rouge_2_precision',
'rouge_2_f_score', 'rouge_1_precision', 'rouge_1_recall', 'rouge_l_precision',
'rouge_l_f_score', 'js-2', 'mover_score', 'bert_recall_score', 'bert_precision_score',
'bert_f_score'],
"debug": False
}
realsumm_ext_config = realsumm_abs_config.copy()
realsumm_ext_config["dataset_name"] = "realsumm_ext"
realsumm_ext_config["data_path"] = os.path.join(data_path_root, "ext.pkl") # you need to get this file. See ReadMe.
newsroom_config = {
"dataset_name": "newsroom",
"human_metrics": ["InformativenessRating", "RelevanceRating", "CoherenceRating", "FluencyRating"],
"docID_column": "ArticleID",
"document_column": "ArticleText",
"system_summary_column": "SystemSummary",
"reference_summary_column": "ReferenceSummary",
"human_eval_only_path": os.path.join(data_path_root, "newsroom-human-eval.csv"), # you need to get this file. See ReadMe.
"refs_path": os.path.join(data_path_root, "test.jsonl"), # you need to get this file. See ReadMe.
"human_eval_w_refs_path": os.path.join(data_path_root, "newsroom_human_eval_with_refs.csv"),
"precalc_metrics": [],
}
tac2010_config = {
"dataset_name": "tac2010",
"human_metrics": ["Pyramid", "Linguistic", "Overall"],
"approaches": ["new"],
"docID_column": "docsetID",
"document_column": "ArticleText",
"system_summary_column": "SystemSummary",
"reference_summary_column": "ReferenceSummary",
"data_path": os.path.join(data_path_root, "TAC2010"), # This is a folder. See ReadMe.
"precalc_metrics": [],
"is_multi": True, # very important for TAC2010, multi-document summarization
"debug": False
}
qags_config = {
"human_metrics": ["human"],
"docID_column": "id",
"document_column": "doc",
"system_summary_column": "sum",
# FIXME only one summary is available
"reference_summary_column": "sum",
"approaches": ["new"],
"data_path": os.path.join(data_path_root, "qags/data"),
"precalc_metrics": []
}
frank_config = {
"human_metrics": ["human"],
"docID_column": "id",
"document_column": "doc",
"system_summary_column": "sum",
"reference_summary_column": "ref",
"approaches": ["new"],
"data_path": os.path.join(data_path_root, "frank/data"),
"precalc_metrics": []
}
fastcc_config = {
"human_metrics": ["human"],
"docID_column": "id",
"document_column": "doc",
"system_summary_column": "sum",
# FIXME only one summary is available
"reference_summary_column": "sum",
"approaches": ["new"],
"split": {
"train": "data-train.jsonl",
"dev": "data-dev.jsonl",
"test": "data-test.jsonl"
},
"data_path": os.path.join(data_path_root, "factCC/data_pairing/data/generated_data/data-clipped"),
"precalc_metrics": []
}