-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheval.py
102 lines (88 loc) · 4.25 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
# Python standard modules
import functools
import warnings
import typing
# Common ML/math modules
import numpy as np
import torch
from tqdm.auto import trange
from text_preprocess import list_segmentation
# Our own
import dar_type
import mnli.sim
# Approach 1.1: Cosine similarity for sentence similarity
# originally called sim_mat_cos_f
def get_similarity_matrix_cos(
cand_segments: dar_type.TextSegments,
ref_segments: dar_type.TextSegments,
embedder: dar_type.Embedder) -> typing.Optional[np.ndarray]:
"""Compute the similarity matrix between two sets of sentences using Cosine similarity.
"""
if len(cand_segments) == 0 or len(ref_segments) == 0:
warnings.warn("Empty cand_segments or ref_segments; len(cand_segments)={}, len(ref_segments)={}".format(len(cand_segments), len(ref_segments)))
return None
def bert_encode(piece_segments: dar_type.TextSegments):
with torch.no_grad():
return embedder(piece_segments)
ref_sent_emb = bert_encode(ref_segments)
cand_sent_emb = bert_encode(cand_segments)
numerators = np.inner(ref_sent_emb, cand_sent_emb)
ref_sent_emb_norms = np.linalg.norm(ref_sent_emb, axis=1)
cand_sent_emb_norms = np.linalg.norm(cand_sent_emb, axis=1)
denominators = np.outer(ref_sent_emb_norms, cand_sent_emb_norms)
sim_mat = np.divide(numerators, denominators)
return sim_mat # shape: (len(ref_segments), len(cand_segments))
def score_np(
predictions: dar_type.TextList,
references: dar_type.TextList,
sim_mat_f: dar_type.SimilarityMatrixFunc, # the function that computes the similarity matrix
idf_f: typing.Optional[dar_type.IdfScoreFunction] = None) -> np.ndarray:
cands, refs = list_segmentation(predictions), list_segmentation(references)
all_scores = np.empty((len(cands), 3))
for index in trange(len(cands), desc="bertscore-sentence {}".format(sim_mat_f.__name__), leave=False): # all pieces, len(cands) == len(refs)
sim_mat = sim_mat_f(cand_segments=cands[index], ref_segments=refs[index])
if sim_mat is None:
all_scores[index, :] = np.zeros((3,))
continue
if idf_f is None:
idf_list_r = np.ones(len(refs[index]))
idf_list_p = np.ones(len(cands[index]))
else:
idf_list_r = idf_f(cands[index], sim_mat.T, sim_mat_f)
idf_list_p = idf_f(refs[index], sim_mat, sim_mat_f)
if sum(idf_list_r) == 0:
idf_list_r = np.ones(len(refs[index]))
if sum(idf_list_p) == 0:
idf_list_p = np.ones(len(cands[index]))
R = (1 / np.sum(idf_list_r)) * np.sum(idf_list_r * np.max(sim_mat, axis=1))
P = (1 / np.sum(idf_list_p)) * np.sum(idf_list_p * np.max(sim_mat, axis=0))
F = 2 * ((P * R) / (P + R))
all_scores[index, :] = np.array([P, R, F])
if np.isnan(all_scores[index, :]).any():
warnings.warn("nan score replaced. [ref] {}; [cand] {}".format(refs[index], cands[index]), dar_type.DocWarning)
all_scores[index, :] = np.zeros((3,))
return all_scores
def compute(
predictions: dar_type.TextList,
references: dar_type.TextList,
sim_mat_f: dar_type.SimilarityMatrixFunc,
idf_f: typing.Optional[dar_type.IdfScoreFunction] = None
) -> dar_type.MetricScoreDict:
cands, refs = predictions, references # simple renaming
score_arr = score_np(predictions=cands, references=refs, sim_mat_f=sim_mat_f, idf_f=idf_f)
return {
"P": score_arr[:, 0].tolist(),
"R": score_arr[:, 1].tolist(),
"F": score_arr[:, 2].tolist()
}
# Approach 1.1: use cosine similarity to estimate sentence similarity
def compute_cos(
predictions: dar_type.TextList,
references: dar_type.TextList,
embedder: dar_type.Embedder,
idf_f: typing.Optional[dar_type.IdfScoreFunction] = None
) -> dar_type.MetricScoreDict:
cos_sim_mat_f_with_embedder: dar_type.SimilarityMatrixFunc = \
functools.partial(get_similarity_matrix_cos, embedder=embedder)
cos_sim_mat_f_with_embedder.__name__ = " ".join(["cos", embedder.__name__])
return compute(predictions=predictions, references=references, sim_mat_f=cos_sim_mat_f_with_embedder, idf_f=idf_f)