-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstructural_alignment.py
100 lines (80 loc) · 3.1 KB
/
structural_alignment.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
#!/usr/bin/python
# program takes in one argument - a list of the pdb names in which the user wants to dock a ligand too
# python structural_alignment.py <pdb_list>
import sys
import os
import csv
direct=os.getcwd()
sys.path.append("%s/analysis" %direct)
sys.path.append("%s/ligand" %direct)
from tmalign import TmAlign
from ligand import LigandSetup
import pandas as pd
import os
pdb_list = sys.argv[1]
#def test_tmalign():
#movable= "test/bgl_mut.pdb" #model, not ligand in it
#target= "test/bgl.pdb" # template with ligand
#tm=TmAlign()
#tm.run(movable,target)
#tm.read_fa_results_movable(movable)
#print "\n".join(tm.rotated_to_target)
def remove_sequence_from_scorefile(scorefile_with_path):
import re
with open(scorefile_with_path,'r') as fh:
lines = fh.read().splitlines()
if (re.search(r'SEQUENCE',lines[0]) ):
print "First line starts with sequence, removing..."
df = pd.read_csv(scorefile_with_path,delim_whitespace=True,header=1)
else:
print "Doesn't start with \"SEQUENCE\" "
df = pd.read_csv(scorefile_with_path,delim_whitespace=True,header=0)
return df
def get_lowE_tag_from_scorefile():
dir=os.getcwd()
df = remove_sequence_from_scorefile("%s/score.sc" %dir)
adj_score = pd.DataFrame(df['total_score'] - df['atom_pair_constraint'])
df['adj_score'] = adj_score
df = df.sort(columns='adj_score')
lowE = df['description'].head(1).values
return lowE
def overlay_get_ligand( movable, target ):
# movable= "test/bgl_mut.pdb"
# target= "test/bgl.pdb"
ligset=LigandSetup.LigandSetup(movable,target)
ligset.superimpose()
ligset.write_model_lig_out("test_out_rot_wlig")
def main():
f = open(pdb_list)
lines = f.readlines()
for name in lines:
# get into the models directory of each pdb in the list
os.chdir(direct + "/models/" + name)
name_dir=os.getcwd()
# make a docking directory in each models directory and then save the path as a variable
if os.path.isdir("docking"):
os.chdir("docking")
docking=os.getcwd()
os.chdir(name_dir)
else:
os.mkdir("docking")
os.chdir("docking")
docking=os.getcwd()
os.chdir(name_dir)
# change into model directory in order to find the lowest score file
os.chdir("model")
model_dir = os.getcwd()
# search through score file in order to find lowest energy model
lowE = get_lowE_tag_from_scorefile()
lowE_pdb = model_dir + '/' + lowE +".pdb"
# clean up the pdb name so that we can open the original pdb file
split_name = name.split('_', 1)
template = model_dir + '/' + split_name[0]+'_'+split_name[0]+'.pdb'
##hard code the template directory
# change into docking directory in order to run the ligand function
# os.chdir(docking)
# overlay_get_ligand( lowE_pdb, template )
os.chdir(direct)
#test_tmalign()
#test_tag_parse()
main()