We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
你好! 在阅读model.py 时发现,代码中decision network的输出是对66x1维的特征计算softmax值(相当于作为一个66类的分类问题处理),最后输出实际上是概率最大的类别的索引。但论文中的描述是对66x1维的向量进行加权进而得到一个概率值,对应的应该是1个沿着channel进行的1x1卷积操作。 vector=tf.concat([vector1,vector2,vector3,vector4],axis=3) vector=tf.squeeze(vector,axis=[1,2]) logits = slim.fully_connected(vector, num_classes,activation_fn=None) output=tf.argmax(logits,axis=1)
The text was updated successfully, but these errors were encountered:
No branches or pull requests
你好!
在阅读model.py 时发现,代码中decision network的输出是对66x1维的特征计算softmax值(相当于作为一个66类的分类问题处理),最后输出实际上是概率最大的类别的索引。但论文中的描述是对66x1维的向量进行加权进而得到一个概率值,对应的应该是1个沿着channel进行的1x1卷积操作。
vector=tf.concat([vector1,vector2,vector3,vector4],axis=3)
vector=tf.squeeze(vector,axis=[1,2])
logits = slim.fully_connected(vector, num_classes,activation_fn=None)
output=tf.argmax(logits,axis=1)
The text was updated successfully, but these errors were encountered: