Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Decision Network输出端与论文描述似乎不符 #25

Open
sy8008 opened this issue Mar 15, 2020 · 0 comments
Open

Decision Network输出端与论文描述似乎不符 #25

sy8008 opened this issue Mar 15, 2020 · 0 comments

Comments

@sy8008
Copy link

sy8008 commented Mar 15, 2020

你好!
在阅读model.py 时发现,代码中decision network的输出是对66x1维的特征计算softmax值(相当于作为一个66类的分类问题处理),最后输出实际上是概率最大的类别的索引。但论文中的描述是对66x1维的向量进行加权进而得到一个概率值,对应的应该是1个沿着channel进行的1x1卷积操作。
vector=tf.concat([vector1,vector2,vector3,vector4],axis=3)
vector=tf.squeeze(vector,axis=[1,2])
logits = slim.fully_connected(vector, num_classes,activation_fn=None)
output=tf.argmax(logits,axis=1)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant