forked from google-research/simclr
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel_util.py
187 lines (162 loc) · 6.65 KB
/
model_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
# coding=utf-8
# Copyright 2020 The SimCLR Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific simclr governing permissions and
# limitations under the License.
# ==============================================================================
"""Network architectures related functions used in SimCLR."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
from absl import flags
import resnet
from lars_optimizer import LARSOptimizer
import tensorflow.compat.v1 as tf
FLAGS = flags.FLAGS
def add_weight_decay(adjust_per_optimizer=True):
"""Compute weight decay from flags."""
if adjust_per_optimizer and 'lars' in FLAGS.optimizer:
# Weight decay are taking care of by optimizer for these cases.
# Except for supervised head, which will be added here.
l2_losses = [tf.nn.l2_loss(v) for v in tf.trainable_variables()
if 'head_supervised' in v.name and 'bias' not in v.name]
if l2_losses:
tf.losses.add_loss(
FLAGS.weight_decay * tf.add_n(l2_losses),
tf.GraphKeys.REGULARIZATION_LOSSES)
return
l2_losses = [tf.nn.l2_loss(v) for v in tf.trainable_variables()
if 'batch_normalization' not in v.name]
tf.losses.add_loss(
FLAGS.weight_decay * tf.add_n(l2_losses),
tf.GraphKeys.REGULARIZATION_LOSSES)
def get_train_steps(num_examples):
"""Determine the number of training steps."""
return FLAGS.train_steps or (
num_examples * FLAGS.train_epochs // FLAGS.train_batch_size + 1)
def learning_rate_schedule(base_learning_rate, num_examples):
"""Build learning rate schedule."""
global_step = tf.train.get_or_create_global_step()
warmup_steps = int(round(
FLAGS.warmup_epochs * num_examples // FLAGS.train_batch_size))
if FLAGS.learning_rate_scaling == 'linear':
scaled_lr = base_learning_rate * FLAGS.train_batch_size / 256.
elif FLAGS.learning_rate_scaling == 'sqrt':
scaled_lr = base_learning_rate * math.sqrt(FLAGS.train_batch_size)
else:
raise ValueError('Unknown learning rate scaling {}'.format(
FLAGS.learning_rate_scaling))
learning_rate = (tf.to_float(global_step) / int(warmup_steps) * scaled_lr
if warmup_steps else scaled_lr)
# Cosine decay learning rate schedule
total_steps = get_train_steps(num_examples)
learning_rate = tf.where(
global_step < warmup_steps, learning_rate,
tf.train.cosine_decay(
scaled_lr,
global_step - warmup_steps,
total_steps - warmup_steps))
return learning_rate
def get_optimizer(learning_rate):
"""Returns an optimizer."""
if FLAGS.optimizer == 'momentum':
optimizer = tf.train.MomentumOptimizer(
learning_rate, FLAGS.momentum, use_nesterov=True)
elif FLAGS.optimizer == 'adam':
optimizer = tf.train.AdamOptimizer(
learning_rate)
elif FLAGS.optimizer == 'lars':
optimizer = LARSOptimizer(
learning_rate,
momentum=FLAGS.momentum,
weight_decay=FLAGS.weight_decay,
exclude_from_weight_decay=['batch_normalization', 'bias',
'head_supervised'])
else:
raise ValueError('Unknown optimizer {}'.format(FLAGS.optimizer))
if FLAGS.use_tpu:
optimizer = tf.tpu.CrossShardOptimizer(optimizer)
return optimizer
def linear_layer(x,
is_training,
num_classes,
use_bias=True,
use_bn=False,
name='linear_layer'):
"""Linear head for linear evaluation.
Args:
x: hidden state tensor of shape (bsz, dim).
is_training: boolean indicator for training or test.
num_classes: number of classes.
use_bias: whether or not to use bias.
use_bn: whether or not to use BN for output units.
name: the name for variable scope.
Returns:
logits of shape (bsz, num_classes)
"""
assert x.shape.ndims == 2, x.shape
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
x = tf.layers.dense(
inputs=x,
units=num_classes,
use_bias=use_bias and not use_bn,
kernel_initializer=tf.random_normal_initializer(stddev=.01))
if use_bn:
x = resnet.batch_norm_relu(x, is_training, relu=False, center=use_bias)
x = tf.identity(x, '%s_out' % name)
return x
def projection_head(hiddens, is_training, name='head_contrastive'):
"""Head for projecting hiddens fo contrastive loss."""
with tf.variable_scope(name, reuse=tf.AUTO_REUSE):
mid_dim = hiddens.shape[-1]
out_dim = FLAGS.proj_out_dim
hiddens_list = [hiddens]
if FLAGS.proj_head_mode == 'none':
pass # directly use the output hiddens as hiddens.
elif FLAGS.proj_head_mode == 'linear':
hiddens = linear_layer(
hiddens, is_training, out_dim,
use_bias=False, use_bn=True, name='l_0')
hiddens_list.append(hiddens)
elif FLAGS.proj_head_mode == 'nonlinear':
for j in range(FLAGS.num_proj_layers):
if j != FLAGS.num_proj_layers - 1:
# for the middle layers, use bias and relu for the output.
dim, bias_relu = mid_dim, True
else:
# for the final layer, neither bias nor relu is used.
dim, bias_relu = FLAGS.proj_out_dim, False
hiddens = linear_layer(
hiddens, is_training, dim,
use_bias=bias_relu, use_bn=True, name='nl_%d'%j)
hiddens = tf.nn.relu(hiddens) if bias_relu else hiddens
hiddens_list.append(hiddens)
else:
raise ValueError('Unknown head projection mode {}'.format(
FLAGS.proj_head_mode))
if FLAGS.train_mode == 'pretrain':
# take the projection head output during pre-training.
hiddens = hiddens_list[-1]
else:
# for checkpoint compatibility, whole projection head is built here.
# but you can select part of projection head during fine-tuning.
hiddens = hiddens_list[FLAGS.ft_proj_selector]
return hiddens
def supervised_head(hiddens, num_classes, is_training, name='head_supervised'):
"""Add supervised head & also add its variables to inblock collection."""
with tf.variable_scope(name):
logits = linear_layer(hiddens, is_training, num_classes)
for var in tf.trainable_variables():
if var.name.startswith(name):
tf.add_to_collection('trainable_variables_inblock_5', var)
return logits