forked from yang-song/score_sde
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathlikelihood.py
123 lines (104 loc) · 5.24 KB
/
likelihood.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
# coding=utf-8
# Copyright 2020 The Google Research Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# pylint: skip-file
# pytype: skip-file
"""Various sampling methods."""
import jax
import flax
import jax.numpy as jnp
import numpy as np
from scipy import integrate
from models import utils as mutils
def get_div_fn(fn):
"""Create the divergence function of `fn` using the Hutchinson-Skilling trace estimator."""
def div_fn(x, t, eps):
grad_fn = lambda data: jnp.sum(fn(data, t) * eps)
grad_fn_eps = jax.grad(grad_fn)(x)
return jnp.sum(grad_fn_eps * eps, axis=tuple(range(1, len(x.shape))))
return div_fn
def get_likelihood_fn(sde, model, inverse_scaler, hutchinson_type='Rademacher',
rtol=1e-5, atol=1e-5, method='RK45', eps=1e-5):
"""Create a function to compute the unbiased log-likelihood estimate of a given data point.
Args:
sde: A `sde_lib.SDE` object that represents the forward SDE.
model: A `flax.linen.Module` object that represents the architecture of the score-based model.
inverse_scaler: The inverse data normalizer.
hutchinson_type: "Rademacher" or "Gaussian". The type of noise for Hutchinson-Skilling trace estimator.
rtol: A `float` number. The relative tolerance level of the black-box ODE solver.
atol: A `float` number. The absolute tolerance level of the black-box ODE solver.
method: A `str`. The algorithm for the black-box ODE solver.
See documentation for `scipy.integrate.solve_ivp`.
eps: A `float` number. The probability flow ODE is integrated to `eps` for numerical stability.
Returns:
A function that takes random states, replicated training states, and a batch of data points
and returns the log-likelihoods in bits/dim, the latent code, and the number of function
evaluations cost by computation.
"""
def drift_fn(state, x, t):
"""The drift function of the reverse-time SDE."""
score_fn = mutils.get_score_fn(sde, model, state.params_ema, state.model_state, train=False, continuous=True)
# Probability flow ODE is a special case of Reverse SDE
rsde = sde.reverse(score_fn, probability_flow=True)
return rsde.sde(x, t)[0]
@jax.pmap
def p_div_fn(state, x, t, eps):
"""Pmapped divergence of the drift function."""
div_fn = get_div_fn(lambda x, t: drift_fn(state, x, t))
return div_fn(x, t, eps)
p_drift_fn = jax.pmap(drift_fn) # Pmapped drift function of the reverse-time SDE
p_prior_logp_fn = jax.pmap(sde.prior_logp) # Pmapped log-PDF of the SDE's prior distribution
def likelihood_fn(prng, pstate, data):
"""Compute an unbiased estimate to the log-likelihood in bits/dim.
Args:
prng: An array of random states. The list dimension equals the number of devices.
pstate: Replicated training state for running on multiple devices.
data: A JAX array of shape [#devices, batch size, ...].
Returns:
bpd: A JAX array of shape [#devices, batch size]. The log-likelihoods on `data` in bits/dim.
z: A JAX array of the same shape as `data`. The latent representation of `data` under the
probability flow ODE.
nfe: An integer. The number of function evaluations used for running the black-box ODE solver.
"""
rng, step_rng = jax.random.split(flax.jax_utils.unreplicate(prng))
shape = data.shape
if hutchinson_type == 'Gaussian':
epsilon = jax.random.normal(step_rng, shape)
elif hutchinson_type == 'Rademacher':
epsilon = jax.random.randint(step_rng, shape,
minval=0, maxval=2).astype(jnp.float32) * 2 - 1
else:
raise NotImplementedError(f"Hutchinson type {hutchinson_type} unknown.")
def ode_func(t, x):
sample = mutils.from_flattened_numpy(x[:-shape[0] * shape[1]], shape)
vec_t = jnp.ones((sample.shape[0], sample.shape[1])) * t
drift = mutils.to_flattened_numpy(p_drift_fn(pstate, sample, vec_t))
logp_grad = mutils.to_flattened_numpy(p_div_fn(pstate, sample, vec_t, epsilon))
return np.concatenate([drift, logp_grad], axis=0)
init = jnp.concatenate([mutils.to_flattened_numpy(data), np.zeros((shape[0] * shape[1],))], axis=0)
solution = integrate.solve_ivp(ode_func, (eps, sde.T), init, rtol=rtol, atol=atol, method=method)
nfe = solution.nfev
zp = jnp.asarray(solution.y[:, -1])
z = mutils.from_flattened_numpy(zp[:-shape[0] * shape[1]], shape)
delta_logp = zp[-shape[0] * shape[1]:].reshape((shape[0], shape[1]))
prior_logp = p_prior_logp_fn(z)
bpd = -(prior_logp + delta_logp) / np.log(2)
N = np.prod(shape[2:])
bpd = bpd / N
# A hack to convert log-likelihoods to bits/dim
# based on the gradient of the inverse data normalizer.
offset = jnp.log2(jax.grad(inverse_scaler)(0.)) + 8.
bpd += offset
return bpd, z, nfe
return likelihood_fn