diff --git a/__pycache__/test.cpython-36.pyc b/__pycache__/test.cpython-36.pyc new file mode 100644 index 0000000..d4ae85f Binary files /dev/null and b/__pycache__/test.cpython-36.pyc differ diff --git a/b64_util.py b/b64_util.py new file mode 100644 index 0000000..3dcbec1 --- /dev/null +++ b/b64_util.py @@ -0,0 +1,16 @@ +import cv2 +import numpy as np + +import base64 + +def readb64(uri): + encoded_data = uri.split(',')[1] + nparr = np.fromstring(base64.b64decode(encoded_data), np.uint8) + img = cv2.imdecode(nparr, cv2.IMREAD_COLOR) + return img + +data_uri = "" +img = readb64(data_uri) +cv2.imshow("asd",img) + + diff --git a/cannyedgedet.py b/cannyedgedet.py index 4fc9341..757174b 100644 --- a/cannyedgedet.py +++ b/cannyedgedet.py @@ -21,7 +21,7 @@ im = cv2.dilate(edges, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5, 5)), iterations=2) new_img = copy.deepcopy(im) -contours, hierarchy = cv2.findContours(new_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) +_,contours, hierarchy = cv2.findContours(new_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) #im = cv2.drawContours(im, contours, -1, (120,120,120), 6) arr = [] @@ -46,7 +46,7 @@ k+=1 if k == 0: arrnew.append(arr[i]) -print arrnew +print(arrnew) @@ -61,7 +61,7 @@ #cv2.imshow("Name", im) cv2.imwrite("roi.jpg", roi) test.testing(model) -cv2.waitKey(0) +# cv2.waitKey(0) diff --git a/cannyedgedet_b64.py b/cannyedgedet_b64.py new file mode 100644 index 0000000..eb02954 --- /dev/null +++ b/cannyedgedet_b64.py @@ -0,0 +1,80 @@ +import cv2 +import numpy as np +from matplotlib import pyplot as plt +import test as test +import copy +import sys +import base64 + +def readb64(uri): + encoded_data = uri.split(',')[1] + nparr = np.frombuffer(base64.b64decode(encoded_data), np.uint8) + print(nparr.shape) + img = cv2.imdecode(nparr, cv2.IMREAD_UNCHANGED) + return img + + +data_uri = "" + +img = readb64(data_uri) +# img = cv2.imread(str(sys.argv[1]), 0) + + +edges = cv2.Canny(img,50,50) +#cv2.imshow("Nae", edges) + + +'''plt.subplot(121),plt.imshow(img,cmap = 'gray') +plt.title('Original Image'), plt.xticks([]), plt.yticks([]) +plt.subplot(122),plt.imshow(edges,cmap = 'gray') +plt.title('Edge Image'), plt.xticks([]), plt.yticks([]) +plt.show() +''' + +im = cv2.dilate(edges, cv2.getStructuringElement(cv2.MORPH_ELLIPSE,(5, 5)), iterations=2) + +new_img = copy.deepcopy(im) +_,contours, hierarchy = cv2.findContours(new_img, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) +#im = cv2.drawContours(im, contours, -1, (120,120,120), 6) + +arr = [] +i=0 +for cnt in contours: + #if cv2.contourArea(cnt)> 10000: + x,y,w,h = cv2.boundingRect(cnt) + arr.append((x,y,w,h)) +model = test.model() +arr = sorted(arr, key=lambda x: x[0]) + + +arrnew = [] +for i in range(len(arr)): + k=0 + arrcpy = copy.deepcopy(arr) + del arrcpy[i] + + for j in range(len(arrcpy)): + + if arr[i][0] > arrcpy[j][0] and arr[i][1] > arrcpy[j][1] and (arr[i][2] + arr[i][0]) < (arrcpy[j][2]+ arrcpy[j][0]) and (arr[i][3] + arr[i][0]) < (arrcpy[j][3] + arr[j][0]): + k+=1 + if k == 0: + arrnew.append(arr[i]) +print(arrnew) + + + +for i in range(len(arrnew)): + x, y, w, h = arrnew[i] + k+=1 + string = "roi"+str(k)+".jpg" + + roi = im[y-int(w/10):y+h+int(w/10), x-int(w/10):x+w+int(w/10)] + cv2.imwrite(string, roi) + image = cv2.rectangle(im,(x-int(w/10),y-int(w/10)),(x+w+int(w/10),y+h+int(w/10)),(120, 120, 120),2) + #cv2.imshow("Name", im) + cv2.imwrite("roi.jpg", roi) + test.testing(model) +# cv2.waitKey(0) + + + diff --git a/new.jpg b/new.jpg new file mode 100644 index 0000000..6b56b0a Binary files /dev/null and b/new.jpg differ diff --git a/roi.jpg b/roi.jpg new file mode 100644 index 0000000..1a1b6d5 Binary files /dev/null and b/roi.jpg differ diff --git a/roi1.jpg b/roi1.jpg new file mode 100644 index 0000000..a52ab3f Binary files /dev/null and b/roi1.jpg differ diff --git a/roi2.jpg b/roi2.jpg new file mode 100644 index 0000000..d93d1aa Binary files /dev/null and b/roi2.jpg differ diff --git a/roi3.jpg b/roi3.jpg new file mode 100644 index 0000000..0ec0160 Binary files /dev/null and b/roi3.jpg differ diff --git a/test.py b/test.py index 695540f..893a80a 100644 --- a/test.py +++ b/test.py @@ -1,10 +1,11 @@ from keras.callbacks import TensorBoard from keras.models import Sequential, Model -from keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPooling2D, Input, Conv3D +from keras.layers import Dense,Dropout,Flatten,Conv2D,MaxPooling2D, Input, Conv3D,BatchNormalization, Activation from keras.optimizers import Adam from keras.callbacks import ModelCheckpoint from keras.utils import np_utils from keras.preprocessing import image +from keras import optimizers import keras import pandas as pd import cv2 @@ -43,23 +44,49 @@ def export_model(saver, model, input_node_names, output_node_name): def model(): + # model = Sequential() + # model.add(Conv2D(32, kernel_size=(3, 3), + # activation='relu', + # input_shape=(28, 28, 1))) + # model.add(Conv2D(64, (3, 3), activation='relu')) + # model.add(MaxPooling2D(pool_size=(2, 2))) + # model.add(Dropout(0.25)) + # model.add(Flatten()) + # model.add(Dense(128, activation='relu')) + # model.add(Dropout(0.5)) + # model.add(Dense(47, activation='softmax')) + + # model.compile(loss=keras.losses.categorical_crossentropy, + # optimizer=keras.optimizers.Adadelta(), + # metrics=['accuracy']) + model = Sequential() - model.add(Conv2D(32, kernel_size=(3, 3), - activation='relu', - input_shape=(28, 28, 1))) - model.add(Conv2D(64, (3, 3), activation='relu')) + model.add(Conv2D(32, 3, 3, border_mode='valid', input_shape=(28, 28, 1))) + model.add(BatchNormalization()) model.add(MaxPooling2D(pool_size=(2, 2))) + model.add(Activation("relu")) + model.add(Conv2D(32, 3, 3, border_mode='valid')) model.add(Dropout(0.25)) + model.add(BatchNormalization()) + model.add(Activation("relu")) + model.add(MaxPooling2D(pool_size=(2, 2))) + model.add(Dropout(0.3)) model.add(Flatten()) + model.add(Dense(1024, activation='relu')) + model.add(BatchNormalization()) + model.add(Dropout(0.4)) model.add(Dense(128, activation='relu')) - model.add(Dropout(0.5)) - model.add(Dense(47, activation='softmax')) + model.add(BatchNormalization()) + model.add(Dropout(0.4)) + model.add(Dense(47)) + model.add(BatchNormalization()) + model.add(Activation("softmax")) + + adam = optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=None, decay=1e-6, amsgrad=False) + model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=['accuracy']) - model.compile(loss=keras.losses.categorical_crossentropy, - optimizer=keras.optimizers.Adadelta(), - metrics=['accuracy']) model.load_weights("output/Weights.h5") - print model.summary + # print model.summary return model @@ -80,7 +107,7 @@ def testing(model): x /= 255 out = model.predict(x) - print dictionary[np.argmax(out)] + print(dictionary[np.argmax(out)]) if __name__=="__main__": model = model()