-
Notifications
You must be signed in to change notification settings - Fork 21
/
Copy path03_cartpole_reinforce_baseline.py
executable file
·115 lines (91 loc) · 3.35 KB
/
03_cartpole_reinforce_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env python3
import gym
import ptan
import numpy as np
from tensorboardX import SummaryWriter
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
GAMMA = 0.99
LEARNING_RATE = 0.01
EPISODES_TO_TRAIN = 4
class PGN(nn.Module):
def __init__(self, input_size, n_actions):
super(PGN, self).__init__()
self.net = nn.Sequential(
nn.Linear(input_size, 128),
nn.ReLU(),
nn.Linear(128, n_actions)
)
def forward(self, x):
return self.net(x)
def calc_qvals(rewards):
res = []
sum_r = 0.0
for r in reversed(rewards):
sum_r *= GAMMA
sum_r += r
res.append(sum_r)
res = list(reversed(res))
mean_q = np.mean(res)
return [q - mean_q for q in res]
if __name__ == "__main__":
env = gym.make("CartPole-v0")
writer = SummaryWriter(comment="-cartpole-reinforce-baseline")
net = PGN(env.observation_space.shape[0], env.action_space.n)
print(net)
agent = ptan.agent.PolicyAgent(net, preprocessor=ptan.agent.float32_preprocessor,
apply_softmax=True)
exp_source = ptan.experience.ExperienceSourceFirstLast(env, agent, gamma=GAMMA)
optimizer = optim.Adam(net.parameters(), lr=LEARNING_RATE)
total_rewards = []
step_idx = 0
done_episodes = 0
batch_episodes = 0
batch_states, batch_actions, batch_qvals = [], [], []
cur_states, cur_actions, cur_rewards = [], [], []
for step_idx, exp in enumerate(exp_source):
cur_states.append(exp.state)
cur_actions.append(int(exp.action))
cur_rewards.append(exp.reward)
if exp.last_state is None:
batch_states.extend(cur_states)
batch_actions.extend(cur_actions)
batch_qvals.extend(calc_qvals(cur_rewards))
cur_states.clear()
cur_actions.clear()
cur_rewards.clear()
batch_episodes += 1
# handle new rewards
new_rewards = exp_source.pop_total_rewards()
if new_rewards:
done_episodes += 1
reward = new_rewards[0]
total_rewards.append(reward)
mean_rewards = float(np.mean(total_rewards[-100:]))
print("%d: reward: %6.2f, mean_100: %6.2f, episodes: %d" % (
step_idx, reward, mean_rewards, done_episodes))
writer.add_scalar("reward", reward, step_idx)
writer.add_scalar("reward_100", mean_rewards, step_idx)
writer.add_scalar("episodes", done_episodes, step_idx)
if mean_rewards > 195:
print("Solved in %d steps and %d episodes!" % (step_idx, done_episodes))
break
if batch_episodes < EPISODES_TO_TRAIN:
continue
states_v = torch.FloatTensor(batch_states)
batch_actions_t = torch.LongTensor(batch_actions)
batch_qvals_v = torch.FloatTensor(batch_qvals)
optimizer.zero_grad()
logits_v = net(states_v)
log_prob_v = F.log_softmax(logits_v, dim=1)
log_prob_actions_v = batch_qvals_v * log_prob_v[range(len(batch_states)), batch_actions_t]
loss_v = -log_prob_actions_v.mean()
loss_v.backward()
optimizer.step()
batch_episodes = 0
batch_states.clear()
batch_actions.clear()
batch_qvals.clear()
writer.close()