forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsuper-ugly-number.py
130 lines (109 loc) · 3.56 KB
/
super-ugly-number.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
# Time: O(n * k)
# Space: O(n + k)
import heapq
# Heap solution. (620ms)
class Solution(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
heap, uglies, idx, ugly_by_last_prime = [], [0] * n, [0] * len(primes), [0] * n
uglies[0] = 1
for k, p in enumerate(primes):
heapq.heappush(heap, (p, k))
for i in xrange(1, n):
uglies[i], k = heapq.heappop(heap)
ugly_by_last_prime[i] = k
idx[k] += 1
while ugly_by_last_prime[idx[k]] > k:
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
return uglies[-1]
# Time: O(n * k)
# Space: O(n + k)
# Hash solution. (932ms)
class Solution2(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
uglies, idx, heap, ugly_set = [0] * n, [0] * len(primes), [], set([1])
uglies[0] = 1
for k, p in enumerate(primes):
heapq.heappush(heap, (p, k))
ugly_set.add(p)
for i in xrange(1, n):
uglies[i], k = heapq.heappop(heap)
while (primes[k] * uglies[idx[k]]) in ugly_set:
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
ugly_set.add(primes[k] * uglies[idx[k]])
return uglies[-1]
# Time: O(n * logk) ~ O(n * klogk)
# Space: O(n + k)
class Solution3(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
uglies, idx, heap = [1], [0] * len(primes), []
for k, p in enumerate(primes):
heapq.heappush(heap, (p, k))
for i in xrange(1, n):
min_val, k = heap[0]
uglies += [min_val]
while heap[0][0] == min_val: # worst time: O(klogk)
min_val, k = heapq.heappop(heap)
idx[k] += 1
heapq.heappush(heap, (primes[k] * uglies[idx[k]], k))
return uglies[-1]
# Time: O(n * k)
# Space: O(n + k)
# TLE due to the last test case, but it passess and performs the best in C++.
class Solution4(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
uglies = [0] * n
uglies[0] = 1
ugly_by_prime = list(primes)
idx = [0] * len(primes)
for i in xrange(1, n):
uglies[i] = min(ugly_by_prime)
for k in xrange(len(primes)):
if uglies[i] == ugly_by_prime[k]:
idx[k] += 1
ugly_by_prime[k] = primes[k] * uglies[idx[k]]
return uglies[-1]
# Time: O(n * logk) ~ O(n * klogk)
# Space: O(k^2)
# TLE due to the last test case, but it passess and performs well in C++.
class Solution5(object):
def nthSuperUglyNumber(self, n, primes):
"""
:type n: int
:type primes: List[int]
:rtype: int
"""
ugly_number = 0
heap = []
heapq.heappush(heap, 1)
for p in primes:
heapq.heappush(heap, p)
for _ in xrange(n):
ugly_number = heapq.heappop(heap)
for i in xrange(len(primes)):
if ugly_number % primes[i] == 0:
for j in xrange(i + 1):
heapq.heappush(heap, ugly_number * primes[j])
break
return ugly_number