forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgraph-connectivity-with-threshold.py
46 lines (41 loc) · 1.46 KB
/
graph-connectivity-with-threshold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Time: O((nlogn + q) * α(n)) ~= O(nlogn + q)
# Space: O(n)
class UnionFind(object): # Time: (n * α(n)), Space: O(n)
def __init__(self, n):
self.set = range(n)
self.rank = [0]*n
def find_set(self, x):
stk = []
while self.set[x] != x: # path compression
stk.append(x)
x = self.set[x]
while stk:
self.set[stk.pop()] = x
return x
def union_set(self, x, y):
x_root, y_root = map(self.find_set, (x, y))
if x_root == y_root:
return False
if self.rank[x_root] < self.rank[y_root]: # union by rank
self.set[x_root] = y_root
elif self.rank[x_root] > self.rank[y_root]:
self.set[y_root] = x_root
else:
self.set[y_root] = x_root
self.rank[x_root] += 1
return True
class Solution(object):
def areConnected(self, n, threshold, queries):
"""
:type n: int
:type threshold: int
:type queries: List[List[int]]
:rtype: List[bool]
"""
union_find = UnionFind(n)
for i in xrange(threshold+1, n+1):
# https://stackoverflow.com/questions/25905118/finding-big-o-of-the-harmonic-series
# sum of harmonic series is O(logn)
for j in xrange(2*i, n+1, i): # step by i
union_find.union_set(i-1, j-1)
return [union_find.find_set(q[0]-1) == union_find.find_set(q[1]-1) for q in queries]