forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathshortest-path-to-get-all-keys.cpp
105 lines (102 loc) · 3.84 KB
/
shortest-path-to-get-all-keys.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
// Time: O(k*r*c + |E|log|V|) = O(k*r*c + (k*|V|)*log|V|)
// = O(k*r*c + (k*(k*2^k))*log(k*2^k))
// = O(k*r*c + (k*(k*2^k))*(logk + k*log2))
// = O(k*r*c + (k*(k*2^k))*k)
// = O(k*r*c + k^3*2^k)
// Space: O(|V|) = O(k*2^k)
class Solution {
public:
int shortestPathAllKeys(vector<string>& grid) {
unordered_map<char, pair<int, int>> locations;
for (int r = 0; r < grid.size(); ++r) {
for (int c = 0; c < grid[0].size(); ++c) {
if (string(".#").find(grid[r][c]) == string::npos) {
locations[grid[r][c]] = make_pair(r, c);
}
}
}
unordered_map<char, unordered_map<char, int>> dists;
for (const auto& kvp : locations) {
dists[kvp.first] = bfs(grid, kvp.first, locations);
}
// Dijkstra's algorithm
using T = tuple<int, char, int>;
priority_queue<T, vector<T>, greater<T>> min_heap;
min_heap.emplace(0, '@', 0);
unordered_map<char, unordered_map<int, int>> best;
best['@'][0] = 0;
int count = 0;
for (const auto& kvp : locations) {
if (islower(kvp.first)) {
++count;
}
}
uint32_t target_state = (1 << count) - 1;
while (!min_heap.empty()) {
int cur_d, state;
char place;
tie(cur_d, place, state) = min_heap.top(); min_heap.pop();
if (best.count(place) &&
best[place].count(state) &&
best[place][state] < cur_d) {
continue;
}
if (state == target_state) {
return cur_d;
}
for (const auto& kvp : dists[place]) {
int dest, d;
tie(dest, d) = kvp;
auto next_state = state;
if (islower(dest)) {
next_state |= (1 << (dest - 'a'));
} else if (isupper(dest)) {
if (!(state & (1 << (dest - 'A')))) {
continue;
}
}
if (!best.count(dest) ||
!best[dest].count(next_state) ||
cur_d + d < best[dest][next_state]) {
best[dest][next_state] = cur_d + d;
min_heap.emplace(cur_d + d, dest, next_state);
}
}
}
return -1;
}
private:
unordered_map<char, int> bfs(const vector<string>&grid,
char source,
const unordered_map<char, pair<int, int>>& locations) {
static const vector<pair<int, int>> directions{{0, -1}, {0, 1},
{-1, 0}, {1, 0}};
int r, c;
tie(r, c) = locations.at(source);
vector<vector<bool>> lookup(grid.size(), vector<bool>(grid[0].size()));
lookup[r][c] = true;
queue<tuple<int, int, int>> q;
q.emplace(r, c, 0);
unordered_map<char, int> dist;
while (!q.empty()) {
int r, c, d;
tie(r, c, d) = q.front(); q.pop();
if (source != grid[r][c] && grid[r][c] != '.') {
dist[grid[r][c]] = d;
continue;
}
for (const auto& dir : directions) {
int cr = r + dir.first, cc = c + dir.second;
if (!((0 <= cr && cr < grid.size()) &&
(0 <= cc && cc < grid[0].size()))) {
continue;
}
if (grid[cr][cc] != '#' && !lookup[cr][cc]) {
lookup[cr][cc] = true;
q.emplace(cr, cc, d + 1);
}
}
}
return dist ;
}
};