forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpartition-to-k-equal-sum-subsets.cpp
72 lines (68 loc) · 2.17 KB
/
partition-to-k-equal-sum-subsets.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
// Time: O(n*2^n)
// Space: O(2^n)
// Memoization solution.
class Solution {
public:
bool canPartitionKSubsets(vector<int>& nums, int k) {
auto sum = accumulate(nums.begin(), nums.end(), 0);
if (sum % k != 0 || *max_element(nums.begin(), nums.end()) > sum / k) {
return false;
}
unordered_map<int, int> lookup;
lookup[(1 << nums.size()) - 1] = true;
return dfs(nums, sum / k, 0, sum, &lookup);
}
private:
bool dfs(const vector<int>& nums, const int target,
const int used, const int todo,
unordered_map<int, int> *lookup) {
if (!lookup->count(used)) {
const auto targ = (todo - 1) % target + 1;
for (int i = 0; i < nums.size(); ++i) {
if (((used >> i) & 1) == 0 && nums[i] <= targ) {
if (dfs(nums, target, used | (1 << i), todo - nums[i], lookup)) {
(*lookup)[used] = true;
break;
}
}
}
}
return (*lookup)[used];
}
};
// Time: O(k^(n-k) * k!)
// Space: O(n)
// DFS solution with pruning.
class Solution2 {
public:
bool canPartitionKSubsets(vector<int>& nums, int k) {
auto sum = accumulate(nums.begin(), nums.end(), 0);
if (sum % k != 0 || *max_element(nums.begin(), nums.end()) > sum / k) {
return false;
}
sort(nums.begin(), nums.end(), greater<int>()); // speedup dfs
vector<int> subset_sums(k);
return dfs(nums, sum / k, 0, &subset_sums);
}
private:
bool dfs(const vector<int> &nums, const int target,
const int i, vector<int> *subset_sums) {
if (i == nums.size()) {
return true;
}
for (auto& subset_sum : *subset_sums) {
if (subset_sum + nums[i] > target) {
continue;
}
subset_sum += nums[i];
if (dfs(nums, target, i + 1, subset_sums)) {
return true;
}
subset_sum -= nums[i];
if (subset_sum == 0) { // pruning
break;
}
}
return false;
}
};