forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathletter-tile-possibilities.cpp
75 lines (68 loc) · 2.22 KB
/
letter-tile-possibilities.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
// Time: O(n^2)
// Space: O(n)
class Solution {
public:
int numTilePossibilities(string tiles) {
vector<double> fact(tiles.size() + 1);
fact[0] = 1.0;
for (int i = 1; i < fact.size(); ++i) {
fact[i] = fact[i - 1] * i;
}
vector<int> count(26);
for (const auto& c : tiles) {
++count[c - 'A'];
}
// 1. we can represent each alphabet 1..26 as generating functions:
// G1(x) = 1 + x^1/1! + x^2/2! + x^3/3! + ... + x^count1/count1!
// G2(x) = 1 + x^1/1! + x^2/2! + x^3/3! + ... + x^count2/count2!
// ...
// G26(x) = 1 + x^1/1! + x^2/2! + x^3/3! + ... + x^count26/count26!
//
// 2. let G1(x)*G2(x)*...*G26(x) = c0 + c1*x1 + ... + ck*x^k, k is the max number s.t. ck != 0
// => ci (1 <= i <= k) is the number we need to divide when permuting i letters
// => the answer will be : c1*1! + c2*2! + ... + ck*k!
vector<double> coeff(tiles.size() + 1);
coeff[0] = 1.0;
for (int i = 0; i < 26; ++i) {
vector<double> new_coeff(coeff.size());
for (int j = 0; j < coeff.size(); ++j) {
for (int k = 0; k <= count[i]; ++k) {
if (k + j >= new_coeff.size()) {
break;
}
new_coeff[j + k] += coeff[j] * 1.0 / fact[k];
}
}
coeff = move(new_coeff);
}
int result = 0;
for (int i = 1; i < coeff.size(); ++i) {
result += int(round(coeff[i] * fact[i]));
}
return result;
}
};
// Time: O(r), r is the value of result
// Space: O(n)
class Solution2 {
public:
int numTilePossibilities(string tiles) {
unordered_map<char,int> count;
for (const auto& c : tiles) {
++count[c];
}
return backtracking(&count);
}
private:
int backtracking(unordered_map<char,int> *count) {
int total = 0;
for (auto& c : *count) {
if (c.second) {
--c.second;
total += 1 + backtracking(count);
++c.second;
}
}
return total;
}
};