forked from kamyu104/LeetCode-Solutions
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathalien-dictionary.cpp
222 lines (205 loc) · 6.96 KB
/
alien-dictionary.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
// Time: O(n)
// Space: O(|V|+|E|) = O(26 + 26^2) = O(1)
// BFS solution.
class Solution {
public:
string alienOrder(vector<string>& words) {
unordered_set<char> nodes;
unordered_map<char, unordered_set<char>> in_degree, out_degree;
queue<char> zero_in_degree_queue;
for (const auto& word : words) {
for (const auto& c : word) {
nodes.emplace(c);
}
}
for (int i = 1; i < words.size(); ++i) {
if (words[i - 1].length() > words[i].length() &&
words[i - 1].substr(0, words[i].length()) == words[i]) {
return "";
}
findEdges(words[i - 1], words[i], &in_degree, &out_degree);
}
for (const auto& node : nodes) {
if (in_degree.find(node) == in_degree.end()) {
zero_in_degree_queue.emplace(node);
}
}
// BFS
string result;
while (!zero_in_degree_queue.empty()) {
const auto& precedence = zero_in_degree_queue.front();
zero_in_degree_queue.pop();
result.push_back(precedence);
if (out_degree.find(precedence) != out_degree.end()) {
for (const auto& c : out_degree[precedence]) {
in_degree[c].erase(precedence);
if (in_degree[c].empty()) {
zero_in_degree_queue.emplace(c);
}
}
out_degree.erase(precedence);
}
}
if (!out_degree.empty()) {
return "";
}
return result;
}
private:
// Construct the graph.
void findEdges(const string &word1, const string &word2,
unordered_map<char, unordered_set<char>> *in_degree,
unordered_map<char, unordered_set<char>> *out_degree) {
const int len = min(word1.length(), word2.length());
for (int i = 0; i < len; ++i) {
if (word1[i] != word2[i]) {
(*in_degree)[word2[i]].emplace(word1[i]);
(*out_degree)[word1[i]].emplace(word2[i]);
break;
}
}
}
};
// DFS solution.
class Solution2 {
public:
string alienOrder(vector<string>& words) {
// Find ancestors of each node by DFS.
unordered_set<char> nodes;
unordered_map<char, vector<char>> ancestors;
for (int i = 0; i < words.size(); ++i) {
for (const auto& c : words[i]) {
nodes.emplace(c);
}
if (i > 0) {
findEdges(words[i - 1], words[i], &ancestors);
}
}
// Output topological order by DFS.
string result;
unordered_map<char, char> visited;
for (const auto& node : nodes) {
if (topSortDFS(node, node, &ancestors, &visited, &result)) {
return "";
}
}
return result;
}
private:
// Construct the graph.
void findEdges(const string &word1, const string &word2,
unordered_map<char, vector<char>> *ancestors) {
const int len = min(word1.length(), word2.length());
for (int i = 0; i < len; ++i) {
if (word1[i] != word2[i]) {
(*ancestors)[word2[i]].emplace_back(word1[i]);
break;
}
}
}
// Topological sort, return whether there is a cycle.
bool topSortDFS(const char& root,
const char& node,
unordered_map<char, vector<char>> *ancestors,
unordered_map<char, char> *visited,
string *result) {
if (visited->emplace(make_pair(node, root)).second) {
for (auto& ancestor: (*ancestors)[node]) {
if (topSortDFS(root, ancestor, ancestors, visited, result)) {
return true;
}
}
result->push_back(node);
} else if ((*visited)[node] == root) {
// Visited from the same root in the DFS path.
// So it is cyclic.
return true;
}
return false;
}
};
// DFS with adjacency matrix solution.
class Solution3 {
public:
string alienOrder(vector<string>& words) {
string result;
vector<vector<bool>> graph(26, vector<bool>(26));
findDependency(words, &graph);
findOrder(&graph, &result);
return result;
}
private:
void findEdges(const string &word1, const string &word2, vector<vector<bool>> *graph) {
const int len = min(word1.length(), word2.length());
for (int i = 0; i < len; ++i) {
if (word1[i] != word2[i]) {
(*graph)[word1[i] - 'a'][word2[i] - 'a'] = true;
break;
}
}
}
// Construct the graph.
void findDependency(const vector<string>& words, vector<vector<bool>> *graph) {
for (const auto& c : words[0]) {
(*graph)[c - 'a'][c - 'a'] = true;
}
for (int i = 1; i < words.size(); ++i) {
for (const auto& c : words[i]) {
(*graph)[c - 'a'] [c - 'a'] = true;
}
findEdges(words[i - 1], words[i], graph);
}
}
// Topological sort, return whether there is a cycle.
bool topSortDFS(string *result, vector<bool> *visited,
vector<vector<bool>> *graph, const int root) {
if ((*visited)[root]) {
result->clear();
return true;
}
(*visited)[root] = true;
for (int i = 0; i < 26; ++i) {
if (i != root && (*graph)[root][i]) {
if (topSortDFS(result, visited, graph, i)) {
return true;
}
}
}
(*graph)[root][root] = false;
result->push_back(root + 'a');
return false;
}
void findOrder(vector<vector<bool>> *graph, string *result) {
for (int i = 0; i < 26; ++i) {
// Find a root node.
bool root_node = (*graph)[i][i];
if ((*graph)[i][i]) {
for (int j = 0; j < 26; ++j) {
if (j != i && (*graph)[j][i]) {
root_node = false;
break;
}
}
}
if (root_node) {
string reversed_order = "";
vector<bool> visited(26, false);
if (topSortDFS(&reversed_order, &visited, graph, i)) {
result->clear();
return;
} else {
result->append(reversed_order);
}
}
}
// If there is any unvisited node, return "".
for (int i = 0; i < 26; ++i) {
if ((*graph)[i][i]) {
result->clear();
return;
}
}
// The order should be reversed.
reverse(result->begin(), result->end());
}
};