forked from Hrishikesh-Bhide/safe-roads
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
183 lines (143 loc) · 7.36 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import streamlit as st
import requests
from dotenv import load_dotenv
import os
import polyline
import pandas as pd
from resource.constants import logo_path, ohio_accident_dataset, ohio_hospital_dataset_csv
import numpy as np
def color_accident_no(val, q1, median, q3):
if int(val) >= q3:
return f'background-color: {"orange"}'
elif int(val) >= median:
return f'background-color: {"yellow"}'
elif int(val) <= q1:
return f'background-color: {"#00FF00"}'
# Load environment variables from .env file
load_dotenv()
st.set_page_config(page_title="Safe Roads", page_icon="🤖", layout="wide")
# Get the Google Maps API key from the environment
api_key = os.getenv("GOOGLE_MAPS_API_KEY")
ohio_accident_dataset = pd.read_csv(ohio_accident_dataset, nrows=600)
dataset_start_Lat = [round(acc,2) for acc in list(ohio_accident_dataset['Start_Lat'])]
dataset_start_Lng = [round(acc,2) for acc in list(ohio_accident_dataset['Start_Lng'])]
actual_dataset_start_Lat = [acc for acc in list(ohio_accident_dataset['Start_Lat'])]
actual_dataset_start_Lng = [acc for acc in list(ohio_accident_dataset['Start_Lng'])]
ohio_hospital_dataset = pd.read_csv(ohio_hospital_dataset_csv)
hospital_lat = ohio_hospital_dataset['LATITUDE']
hospital_lng = ohio_hospital_dataset['LONGITUDE']
with st.sidebar:
st.markdown("<h1 style='text-align: center; color: blue;font-size: 30px;'>Safe Roads</h1>", unsafe_allow_html=True)
st.image(logo_path, width=250)
# Centered image with custom CSS
src = st.text_input("Enter Source")
dest = st.text_input("Enter Destination")
find_safe_route = st.button("Get the safe route")
if find_safe_route == True:
# Use the Google Directions API to get the path with alternatives
directions_url = f"https://maps.googleapis.com/maps/api/directions/json"
params = {
"origin": src,
"destination": dest,
"key": api_key,
"alternatives": "true" # Request alternate routes
}
response = requests.get(directions_url, params=params)
data = response.json()
whole_accident_dataframe = []
for i in range(len(data["routes"])):
accident_dataframe = {}
accident_dataframe["Route No"] = 0
#accident_dataframe["Co-ordinates"] = []
accident_dataframe["No Of Accidents"] = 0
accident_dataframe["Description"] = ""
if data.get("status") == "OK":
# Get and display multiple routes
coordinates_list = [] # List to store route coordinates
route_color = []
for idx, route in enumerate(data["routes"]):
whole_accident_cordinates = []
# Extract the polyline string from the response
polyline_str = route["overview_polyline"]["points"]
# Decode the polyline to get the coordinates
coordinates = polyline.decode(polyline_str)
route_lat = []
route_lag = []
for cor in coordinates:
#route_color.append(color_list[idx])
if dataset_start_Lat.__contains__(round(cor[0],2)) == True:
accident_lat_index = dataset_start_Lat.index(round(cor[0],2))
if dataset_start_Lng[accident_lat_index] == round(cor[1],2):
whole_accident_cordinates.append(cor)
accident_dataframe = {}
accident_dataframe["Route No"] = "Route " + str(idx+1)
#accident_dataframe["Co-ordinates"] = whole_accident_cordinates
accident_dataframe["No Of Accidents"] = str(len(whole_accident_cordinates))
whole_accident_dataframe.append(accident_dataframe)
# Append coordinates to the list
coordinates_list.append(coordinates)
# Combine all route coordinates into a single DataFrame
combined_coordinates = [coord for coords in coordinates_list for coord in coords]
# Adding Accident Spots
for lat, lng in zip(actual_dataset_start_Lat, actual_dataset_start_Lng):
combined_coordinates.append((lat, lng))
# Adding Hospital Spots
for lat, lng in zip(hospital_lat, hospital_lng):
combined_coordinates.append((lat, lng))
df = pd.DataFrame(combined_coordinates, columns=["LATITUDE", "LONGITUDE"])
whole_accident_dataframe = pd.DataFrame(whole_accident_dataframe)
no_accident_list = [int(no) for no in list(whole_accident_dataframe['No Of Accidents'])]
q1 = np.percentile(no_accident_list, 25)
median = np.percentile(no_accident_list, 50)
q3 = np.percentile(no_accident_list, 75)
sorted_df_descending = whole_accident_dataframe.sort_values(by='No Of Accidents', ascending=True)
styled_accident_numbers_df = sorted_df_descending.style.applymap(lambda x: color_accident_no(x, q1, median, q3),subset='No Of Accidents')
route_color_map = {}
for k in range(len(whole_accident_dataframe['No Of Accidents'])):
if int(whole_accident_dataframe['No Of Accidents'][k]) <= q1:
route_color_map[whole_accident_dataframe['Route No'][k]] = '#00FF00' #Green
elif int(whole_accident_dataframe['No Of Accidents'][k]) <= median:
route_color_map[whole_accident_dataframe['Route No'][k]] = '#FFFF00' #Yellow
elif int(whole_accident_dataframe['No Of Accidents'][k]) >= q3:
route_color_map[whole_accident_dataframe['Route No'][k]] = '#FFA500' #Orange
route_color_as_per_level = []
for idx, route in enumerate(data["routes"]):
polyline_str = route["overview_polyline"]["points"]
# Decode the polyline to get the coordinates
coordinates = polyline.decode(polyline_str)
route_lat = []
route_lag = []
for cor in coordinates:
current_route_color = route_color_map["Route " +str(idx+1)]
route_color_as_per_level.append(current_route_color)
# Adding colors for accident spots
for lat, lng in zip(actual_dataset_start_Lat, actual_dataset_start_Lng):
route_color_as_per_level.append('#FF0000') # Red
# Adding colors for hospital Spots
for lat, lng in zip(hospital_lat, hospital_lng):
route_color_as_per_level.append('#0000FF') # Blue
df['Color'] = route_color_as_per_level
# Display the path with all routes on the map
st.map(df, color="Color")
# Create a sample DataFrame
data = {
'Color': ['#FFA500', '#FFFF00', '#00FF00', '#FF0000', '#0000FF'],
'Road Condition': ['Dangerous Route', 'Modarate Risk Route', 'Safe Route', 'Accident Prone Area', 'Hospital']
}
df = pd.DataFrame(data)
# Define a custom function to apply cell background color
def apply_color(val):
background_color = f'background-color: {val}'
return background_color
# Apply the custom function to style the DataFrame
styled_df = df.style.applymap(apply_color, subset=['Color'])
col1, col2 = st.columns(2)
with col1:
# Render the styled DataFrame with cell background colors
st.subheader("Analysis of Risky Roads")
st.write(styled_accident_numbers_df)
with col2:
st.subheader("Color Guidelines")
st.dataframe(styled_df, use_container_width=True)
else:
st.error("Error: Unable to generate the paths. Please check your input.")