forked from zju3dv/PGSR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
500 lines (440 loc) · 26.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
#
# Copyright (C) 2023, Inria
# GRAPHDECO research group, https://team.inria.fr/graphdeco
# All rights reserved.
#
# This software is free for non-commercial, research and evaluation use
# under the terms of the LICENSE.md file.
#
# For inquiries contact [email protected]
#
import os
from datetime import datetime
import torch
import random
import numpy as np
from random import randint
from utils.loss_utils import l1_loss, ssim, lncc, get_img_grad_weight
from utils.graphics_utils import patch_offsets, patch_warp
from gaussian_renderer import render, network_gui
import sys, time
from scene import Scene, GaussianModel
from utils.general_utils import safe_state
import cv2
import uuid
from tqdm import tqdm
from utils.image_utils import psnr, erode
from argparse import ArgumentParser, Namespace
from arguments import ModelParams, PipelineParams, OptimizationParams
from scene.app_model import AppModel
from scene.cameras import Camera
try:
from torch.utils.tensorboard import SummaryWriter
TENSORBOARD_FOUND = True
except ImportError:
TENSORBOARD_FOUND = False
import time
import torch.nn.functional as F
def setup_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
setup_seed(22)
def gen_virtul_cam(cam, trans_noise=1.0, deg_noise=15.0):
Rt = np.zeros((4, 4))
Rt[:3, :3] = cam.R.transpose()
Rt[:3, 3] = cam.T
Rt[3, 3] = 1.0
C2W = np.linalg.inv(Rt)
translation_perturbation = np.random.uniform(-trans_noise, trans_noise, 3)
rotation_perturbation = np.random.uniform(-deg_noise, deg_noise, 3)
rx, ry, rz = np.deg2rad(rotation_perturbation)
Rx = np.array([[1, 0, 0],
[0, np.cos(rx), -np.sin(rx)],
[0, np.sin(rx), np.cos(rx)]])
Ry = np.array([[np.cos(ry), 0, np.sin(ry)],
[0, 1, 0],
[-np.sin(ry), 0, np.cos(ry)]])
Rz = np.array([[np.cos(rz), -np.sin(rz), 0],
[np.sin(rz), np.cos(rz), 0],
[0, 0, 1]])
R_perturbation = Rz @ Ry @ Rx
C2W[:3, :3] = C2W[:3, :3] @ R_perturbation
C2W[:3, 3] = C2W[:3, 3] + translation_perturbation
Rt = np.linalg.inv(C2W)
virtul_cam = Camera(100000, Rt[:3, :3].transpose(), Rt[:3, 3], cam.FoVx, cam.FoVy,
cam.image_width, cam.image_height,
cam.image_path, cam.image_name, 100000,
trans=np.array([0.0, 0.0, 0.0]), scale=1.0,
preload_img=False, data_device = "cuda")
return virtul_cam
def training(dataset, opt, pipe, testing_iterations, saving_iterations, checkpoint_iterations, checkpoint, debug_from):
first_iter = 0
tb_writer = prepare_output_and_logger(dataset)
# backup main code
cmd = f'cp ./train.py {dataset.model_path}/'
os.system(cmd)
cmd = f'cp -rf ./arguments {dataset.model_path}/'
os.system(cmd)
cmd = f'cp -rf ./gaussian_renderer {dataset.model_path}/'
os.system(cmd)
cmd = f'cp -rf ./scene {dataset.model_path}/'
os.system(cmd)
cmd = f'cp -rf ./utils {dataset.model_path}/'
os.system(cmd)
gaussians = GaussianModel(dataset.sh_degree)
scene = Scene(dataset, gaussians)
gaussians.training_setup(opt)
app_model = AppModel()
app_model.train()
app_model.cuda()
if checkpoint:
(model_params, first_iter) = torch.load(checkpoint)
gaussians.restore(model_params, opt)
app_model.load_weights(scene.model_path)
bg_color = [1, 1, 1] if dataset.white_background else [0, 0, 0]
background = torch.tensor(bg_color, dtype=torch.float32, device="cuda")
iter_start = torch.cuda.Event(enable_timing = True)
iter_end = torch.cuda.Event(enable_timing = True)
viewpoint_stack = None
ema_loss_for_log = 0.0
ema_single_view_for_log = 0.0
ema_multi_view_geo_for_log = 0.0
ema_multi_view_pho_for_log = 0.0
normal_loss, geo_loss, ncc_loss = None, None, None
progress_bar = tqdm(range(first_iter, opt.iterations), desc="Training progress")
first_iter += 1
debug_path = os.path.join(scene.model_path, "debug")
os.makedirs(debug_path, exist_ok=True)
for iteration in range(first_iter, opt.iterations + 1):
# if network_gui.conn == None:
# network_gui.try_connect()
# while network_gui.conn != None:
# try:
# net_image_bytes = None
# custom_cam, do_training, pipe.convert_SHs_python, pipe.compute_cov3D_python, keep_alive, scaling_modifer = network_gui.receive()
# if custom_cam != None:
# net_image = render(custom_cam, gaussians, pipe, background, scaling_modifer)["render"]
# net_image_bytes = memoryview((torch.clamp(net_image, min=0, max=1.0) * 255).byte().permute(1, 2, 0).contiguous().cpu().numpy())
# network_gui.send(net_image_bytes, dataset.source_path)
# if do_training and ((iteration < int(opt.iterations)) or not keep_alive):
# break
# except Exception as e:
# network_gui.conn = None
iter_start.record()
gaussians.update_learning_rate(iteration)
# Every 1000 its we increase the levels of SH up to a maximum degree
if iteration % 1000 == 0:
gaussians.oneupSHdegree()
# Pick a random Camera
if not viewpoint_stack:
viewpoint_stack = scene.getTrainCameras().copy()
viewpoint_cam = viewpoint_stack.pop(randint(0, len(viewpoint_stack)-1))
gt_image, gt_image_gray = viewpoint_cam.get_image()
if iteration > 1000 and opt.exposure_compensation:
gaussians.use_app = True
# Render
if (iteration - 1) == debug_from:
pipe.debug = True
bg = torch.rand((3), device="cuda") if opt.random_background else background
render_pkg = render(viewpoint_cam, gaussians, pipe, bg, app_model=app_model,
return_plane=iteration>opt.single_view_weight_from_iter, return_depth_normal=iteration>opt.single_view_weight_from_iter)
image, viewspace_point_tensor, visibility_filter, radii = \
render_pkg["render"], render_pkg["viewspace_points"], render_pkg["visibility_filter"], render_pkg["radii"]
# Loss
ssim_loss = (1.0 - ssim(image, gt_image))
if 'app_image' in render_pkg and ssim_loss < 0.5:
app_image = render_pkg['app_image']
Ll1 = l1_loss(app_image, gt_image)
else:
Ll1 = l1_loss(image, gt_image)
image_loss = (1.0 - opt.lambda_dssim) * Ll1 + opt.lambda_dssim * ssim_loss
loss = image_loss.clone()
# scale loss
if visibility_filter.sum() > 0:
scale = gaussians.get_scaling[visibility_filter]
sorted_scale, _ = torch.sort(scale, dim=-1)
min_scale_loss = sorted_scale[...,0]
loss += opt.scale_loss_weight * min_scale_loss.mean()
# single-view loss
if iteration > opt.single_view_weight_from_iter:
weight = opt.single_view_weight
normal = render_pkg["rendered_normal"]
depth_normal = render_pkg["depth_normal"]
image_weight = (1.0 - get_img_grad_weight(gt_image))
image_weight = (image_weight).clamp(0,1).detach() ** 2
if not opt.wo_image_weight:
# image_weight = erode(image_weight[None,None]).squeeze()
normal_loss = weight * (image_weight * (((depth_normal - normal)).abs().sum(0))).mean()
else:
normal_loss = weight * (((depth_normal - normal)).abs().sum(0)).mean()
loss += (normal_loss)
# multi-view loss
if iteration > opt.multi_view_weight_from_iter:
nearest_cam = None if len(viewpoint_cam.nearest_id) == 0 else scene.getTrainCameras()[random.sample(viewpoint_cam.nearest_id,1)[0]]
use_virtul_cam = False
if opt.use_virtul_cam and (np.random.random() < opt.virtul_cam_prob or nearest_cam is None):
nearest_cam = gen_virtul_cam(viewpoint_cam, trans_noise=dataset.multi_view_max_dis, deg_noise=dataset.multi_view_max_angle)
use_virtul_cam = True
if nearest_cam is not None:
patch_size = opt.multi_view_patch_size
sample_num = opt.multi_view_sample_num
pixel_noise_th = opt.multi_view_pixel_noise_th
total_patch_size = (patch_size * 2 + 1) ** 2
ncc_weight = opt.multi_view_ncc_weight
geo_weight = opt.multi_view_geo_weight
## compute geometry consistency mask and loss
H, W = render_pkg['plane_depth'].squeeze().shape
ix, iy = torch.meshgrid(
torch.arange(W), torch.arange(H), indexing='xy')
pixels = torch.stack([ix, iy], dim=-1).float().to(render_pkg['plane_depth'].device)
nearest_render_pkg = render(nearest_cam, gaussians, pipe, bg, app_model=app_model,
return_plane=True, return_depth_normal=False)
pts = gaussians.get_points_from_depth(viewpoint_cam, render_pkg['plane_depth'])
pts_in_nearest_cam = pts @ nearest_cam.world_view_transform[:3,:3] + nearest_cam.world_view_transform[3,:3]
map_z, d_mask = gaussians.get_points_depth_in_depth_map(nearest_cam, nearest_render_pkg['plane_depth'], pts_in_nearest_cam)
pts_in_nearest_cam = pts_in_nearest_cam / (pts_in_nearest_cam[:,2:3])
pts_in_nearest_cam = pts_in_nearest_cam * map_z.squeeze()[...,None]
R = torch.tensor(nearest_cam.R).float().cuda()
T = torch.tensor(nearest_cam.T).float().cuda()
pts_ = (pts_in_nearest_cam-T)@R.transpose(-1,-2)
pts_in_view_cam = pts_ @ viewpoint_cam.world_view_transform[:3,:3] + viewpoint_cam.world_view_transform[3,:3]
pts_projections = torch.stack(
[pts_in_view_cam[:,0] * viewpoint_cam.Fx / pts_in_view_cam[:,2] + viewpoint_cam.Cx,
pts_in_view_cam[:,1] * viewpoint_cam.Fy / pts_in_view_cam[:,2] + viewpoint_cam.Cy], -1).float()
pixel_noise = torch.norm(pts_projections - pixels.reshape(*pts_projections.shape), dim=-1)
if not opt.wo_use_geo_occ_aware:
d_mask = d_mask & (pixel_noise < pixel_noise_th)
weights = (1.0 / torch.exp(pixel_noise)).detach()
weights[~d_mask] = 0
else:
d_mask = d_mask
weights = torch.ones_like(pixel_noise)
weights[~d_mask] = 0
if iteration % 200 == 0:
gt_img_show = ((gt_image).permute(1,2,0).clamp(0,1)[:,:,[2,1,0]]*255).detach().cpu().numpy().astype(np.uint8)
if 'app_image' in render_pkg:
img_show = ((render_pkg['app_image']).permute(1,2,0).clamp(0,1)[:,:,[2,1,0]]*255).detach().cpu().numpy().astype(np.uint8)
else:
img_show = ((image).permute(1,2,0).clamp(0,1)[:,:,[2,1,0]]*255).detach().cpu().numpy().astype(np.uint8)
normal_show = (((normal+1.0)*0.5).permute(1,2,0).clamp(0,1)*255).detach().cpu().numpy().astype(np.uint8)
depth_normal_show = (((depth_normal+1.0)*0.5).permute(1,2,0).clamp(0,1)*255).detach().cpu().numpy().astype(np.uint8)
d_mask_show = (weights.float()*255).detach().cpu().numpy().astype(np.uint8).reshape(H,W)
d_mask_show_color = cv2.applyColorMap(d_mask_show, cv2.COLORMAP_JET)
depth = render_pkg['plane_depth'].squeeze().detach().cpu().numpy()
depth_i = (depth - depth.min()) / (depth.max() - depth.min() + 1e-20)
depth_i = (depth_i * 255).clip(0, 255).astype(np.uint8)
depth_color = cv2.applyColorMap(depth_i, cv2.COLORMAP_JET)
distance = render_pkg['rendered_distance'].squeeze().detach().cpu().numpy()
distance_i = (distance - distance.min()) / (distance.max() - distance.min() + 1e-20)
distance_i = (distance_i * 255).clip(0, 255).astype(np.uint8)
distance_color = cv2.applyColorMap(distance_i, cv2.COLORMAP_JET)
image_weight = image_weight.detach().cpu().numpy()
image_weight = (image_weight * 255).clip(0, 255).astype(np.uint8)
image_weight_color = cv2.applyColorMap(image_weight, cv2.COLORMAP_JET)
row0 = np.concatenate([gt_img_show, img_show, normal_show, distance_color], axis=1)
row1 = np.concatenate([d_mask_show_color, depth_color, depth_normal_show, image_weight_color], axis=1)
image_to_show = np.concatenate([row0, row1], axis=0)
cv2.imwrite(os.path.join(debug_path, "%05d"%iteration + "_" + viewpoint_cam.image_name + ".jpg"), image_to_show)
if d_mask.sum() > 0:
geo_loss = geo_weight * ((weights * pixel_noise)[d_mask]).mean()
loss += geo_loss
if use_virtul_cam is False:
with torch.no_grad():
## sample mask
d_mask = d_mask.reshape(-1)
valid_indices = torch.arange(d_mask.shape[0], device=d_mask.device)[d_mask]
if d_mask.sum() > sample_num:
index = np.random.choice(d_mask.sum().cpu().numpy(), sample_num, replace = False)
valid_indices = valid_indices[index]
weights = weights.reshape(-1)[valid_indices]
## sample ref frame patch
pixels = pixels.reshape(-1,2)[valid_indices]
offsets = patch_offsets(patch_size, pixels.device)
ori_pixels_patch = pixels.reshape(-1, 1, 2) / viewpoint_cam.ncc_scale + offsets.float()
H, W = gt_image_gray.squeeze().shape
pixels_patch = ori_pixels_patch.clone()
pixels_patch[:, :, 0] = 2 * pixels_patch[:, :, 0] / (W - 1) - 1.0
pixels_patch[:, :, 1] = 2 * pixels_patch[:, :, 1] / (H - 1) - 1.0
ref_gray_val = F.grid_sample(gt_image_gray.unsqueeze(1), pixels_patch.view(1, -1, 1, 2), align_corners=True)
ref_gray_val = ref_gray_val.reshape(-1, total_patch_size)
ref_to_neareast_r = nearest_cam.world_view_transform[:3,:3].transpose(-1,-2) @ viewpoint_cam.world_view_transform[:3,:3]
ref_to_neareast_t = -ref_to_neareast_r @ viewpoint_cam.world_view_transform[3,:3] + nearest_cam.world_view_transform[3,:3]
## compute Homography
ref_local_n = render_pkg["rendered_normal"].permute(1,2,0)
ref_local_n = ref_local_n.reshape(-1,3)[valid_indices]
ref_local_d = render_pkg['rendered_distance'].squeeze()
# rays_d = viewpoint_cam.get_rays()
# rendered_normal2 = render_pkg["rendered_normal"].permute(1,2,0).reshape(-1,3)
# ref_local_d = render_pkg['plane_depth'].view(-1) * ((rendered_normal2 * rays_d.reshape(-1,3)).sum(-1).abs())
# ref_local_d = ref_local_d.reshape(*render_pkg['plane_depth'].shape)
ref_local_d = ref_local_d.reshape(-1)[valid_indices]
H_ref_to_neareast = ref_to_neareast_r[None] - \
torch.matmul(ref_to_neareast_t[None,:,None].expand(ref_local_d.shape[0],3,1),
ref_local_n[:,:,None].expand(ref_local_d.shape[0],3,1).permute(0, 2, 1))/ref_local_d[...,None,None]
H_ref_to_neareast = torch.matmul(nearest_cam.get_k(nearest_cam.ncc_scale)[None].expand(ref_local_d.shape[0], 3, 3), H_ref_to_neareast)
H_ref_to_neareast = H_ref_to_neareast @ viewpoint_cam.get_inv_k(viewpoint_cam.ncc_scale)
## compute neareast frame patch
grid = patch_warp(H_ref_to_neareast.reshape(-1,3,3), ori_pixels_patch)
grid[:, :, 0] = 2 * grid[:, :, 0] / (W - 1) - 1.0
grid[:, :, 1] = 2 * grid[:, :, 1] / (H - 1) - 1.0
_, nearest_image_gray = nearest_cam.get_image()
sampled_gray_val = F.grid_sample(nearest_image_gray[None], grid.reshape(1, -1, 1, 2), align_corners=True)
sampled_gray_val = sampled_gray_val.reshape(-1, total_patch_size)
## compute loss
ncc, ncc_mask = lncc(ref_gray_val, sampled_gray_val)
mask = ncc_mask.reshape(-1)
ncc = ncc.reshape(-1) * weights
ncc = ncc[mask].squeeze()
if mask.sum() > 0:
ncc_loss = ncc_weight * ncc.mean()
loss += ncc_loss
loss.backward()
iter_end.record()
with torch.no_grad():
# Progress bar
ema_loss_for_log = 0.4 * image_loss.item() + 0.6 * ema_loss_for_log
ema_single_view_for_log = 0.4 * normal_loss.item() if normal_loss is not None else 0.0 + 0.6 * ema_single_view_for_log
ema_multi_view_geo_for_log = 0.4 * geo_loss.item() if geo_loss is not None else 0.0 + 0.6 * ema_multi_view_geo_for_log
ema_multi_view_pho_for_log = 0.4 * ncc_loss.item() if ncc_loss is not None else 0.0 + 0.6 * ema_multi_view_pho_for_log
if iteration % 10 == 0:
loss_dict = {
"Loss": f"{ema_loss_for_log:.{5}f}",
"Single": f"{ema_single_view_for_log:.{5}f}",
"Geo": f"{ema_multi_view_geo_for_log:.{5}f}",
"Pho": f"{ema_multi_view_pho_for_log:.{5}f}",
"Points": f"{len(gaussians.get_xyz)}"
}
progress_bar.set_postfix(loss_dict)
progress_bar.update(10)
if iteration == opt.iterations:
progress_bar.close()
# Log and save
training_report(tb_writer, iteration, Ll1, loss, l1_loss, iter_start.elapsed_time(iter_end), testing_iterations, scene, render, (pipe, background), app_model)
if (iteration in saving_iterations):
print("\n[ITER {}] Saving Gaussians".format(iteration))
scene.save(iteration)
# Densification
if iteration < opt.densify_until_iter:
# Keep track of max radii in image-space for pruning
mask = (render_pkg["out_observe"] > 0) & visibility_filter
gaussians.max_radii2D[mask] = torch.max(gaussians.max_radii2D[mask], radii[mask])
viewspace_point_tensor_abs = render_pkg["viewspace_points_abs"]
gaussians.add_densification_stats(viewspace_point_tensor, viewspace_point_tensor_abs, visibility_filter)
if iteration > opt.densify_from_iter and iteration % opt.densification_interval == 0:
size_threshold = 20 if iteration > opt.opacity_reset_interval else None
gaussians.densify_and_prune(opt.densify_grad_threshold, opt.densify_abs_grad_threshold,
opt.opacity_cull_threshold, scene.cameras_extent, size_threshold)
# multi-view observe trim
if opt.use_multi_view_trim and iteration % 1000 == 0 and iteration < opt.densify_until_iter:
observe_the = 2
observe_cnt = torch.zeros_like(gaussians.get_opacity)
for view in scene.getTrainCameras():
render_pkg_tmp = render(view, gaussians, pipe, bg, app_model=app_model, return_plane=False, return_depth_normal=False)
out_observe = render_pkg_tmp["out_observe"]
observe_cnt[out_observe > 0] += 1
prune_mask = (observe_cnt < observe_the).squeeze()
if prune_mask.sum() > 0:
gaussians.prune_points(prune_mask)
# reset_opacity
if iteration < opt.densify_until_iter:
if iteration % opt.opacity_reset_interval == 0 or (dataset.white_background and iteration == opt.densify_from_iter):
gaussians.reset_opacity()
# Optimizer step
if iteration < opt.iterations:
gaussians.optimizer.step()
app_model.optimizer.step()
gaussians.optimizer.zero_grad(set_to_none = True)
app_model.optimizer.zero_grad(set_to_none = True)
if (iteration in checkpoint_iterations):
print("\n[ITER {}] Saving Checkpoint".format(iteration))
torch.save((gaussians.capture(), iteration), scene.model_path + "/chkpnt" + str(iteration) + ".pth")
app_model.save_weights(scene.model_path, iteration)
app_model.save_weights(scene.model_path, opt.iterations)
torch.cuda.empty_cache()
def prepare_output_and_logger(args):
if not args.model_path:
if os.getenv('OAR_JOB_ID'):
unique_str=os.getenv('OAR_JOB_ID')
else:
unique_str = str(uuid.uuid4())
args.model_path = os.path.join("./output/", unique_str[0:10])
# Set up output folder
print("Output folder: {}".format(args.model_path))
os.makedirs(args.model_path, exist_ok = True)
with open(os.path.join(args.model_path, "cfg_args"), 'w') as cfg_log_f:
cfg_log_f.write(str(Namespace(**vars(args))))
# Create Tensorboard writer
tb_writer = None
if TENSORBOARD_FOUND:
tb_writer = SummaryWriter(args.model_path)
else:
print("Tensorboard not available: not logging progress")
return tb_writer
def training_report(tb_writer, iteration, Ll1, loss, l1_loss, elapsed, testing_iterations, scene : Scene, renderFunc, renderArgs, app_model):
if tb_writer:
tb_writer.add_scalar('train_loss_patches/l1_loss', Ll1.item(), iteration)
tb_writer.add_scalar('train_loss_patches/total_loss', loss.item(), iteration)
tb_writer.add_scalar('iter_time', elapsed, iteration)
# Report test and samples of training set
if iteration in testing_iterations:
torch.cuda.empty_cache()
validation_configs = ({'name': 'test', 'cameras' : scene.getTestCameras()},
{'name': 'train', 'cameras' : [scene.getTrainCameras()[idx % len(scene.getTrainCameras())] for idx in range(5, 30, 5)]})
for config in validation_configs:
if config['cameras'] and len(config['cameras']) > 0:
l1_test = 0.0
psnr_test = 0.0
for idx, viewpoint in enumerate(config['cameras']):
out = renderFunc(viewpoint, scene.gaussians, *renderArgs, app_model=app_model)
image = out["render"]
if 'app_image' in out:
image = out['app_image']
image = torch.clamp(image, 0.0, 1.0)
gt_image, _ = viewpoint.get_image()
gt_image = torch.clamp(gt_image.to("cuda"), 0.0, 1.0)
if tb_writer and (idx < 5):
tb_writer.add_images(config['name'] + "_view_{}/render".format(viewpoint.image_name), image[None], global_step=iteration)
if iteration == testing_iterations[0]:
tb_writer.add_images(config['name'] + "_view_{}/ground_truth".format(viewpoint.image_name), gt_image[None], global_step=iteration)
l1_test += l1_loss(image, gt_image).mean().double()
psnr_test += psnr(image, gt_image).mean().double()
psnr_test /= len(config['cameras'])
l1_test /= len(config['cameras'])
print("\n[ITER {}] Evaluating {}: L1 {} PSNR {}".format(iteration, config['name'], l1_test, psnr_test))
if tb_writer:
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - l1_loss', l1_test, iteration)
tb_writer.add_scalar(config['name'] + '/loss_viewpoint - psnr', psnr_test, iteration)
if tb_writer:
tb_writer.add_histogram("scene/opacity_histogram", scene.gaussians.get_opacity, iteration)
tb_writer.add_scalar('total_points', scene.gaussians.get_xyz.shape[0], iteration)
torch.cuda.empty_cache()
if __name__ == "__main__":
torch.set_num_threads(8)
# Set up command line argument parser
parser = ArgumentParser(description="Training script parameters")
lp = ModelParams(parser)
op = OptimizationParams(parser)
pp = PipelineParams(parser)
parser.add_argument('--ip', type=str, default="127.0.0.1")
parser.add_argument('--port', type=int, default=6007)
parser.add_argument('--debug_from', type=int, default=-100)
parser.add_argument('--detect_anomaly', action='store_true', default=False)
parser.add_argument("--test_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--save_iterations", nargs="+", type=int, default=[7_000, 30_000])
parser.add_argument("--quiet", action="store_true")
parser.add_argument("--checkpoint_iterations", nargs="+", type=int, default=[])
parser.add_argument("--start_checkpoint", type=str, default = None)
args = parser.parse_args(sys.argv[1:])
args.save_iterations.append(args.iterations)
print("Optimizing " + args.model_path)
# Initialize system state (RNG)
safe_state(args.quiet)
# Start GUI server, configure and run training
# network_gui.init(args.ip, args.port)
torch.autograd.set_detect_anomaly(args.detect_anomaly)
training(lp.extract(args), op.extract(args), pp.extract(args), args.test_iterations, args.save_iterations, args.checkpoint_iterations, args.start_checkpoint, args.debug_from)
# All done
print("\nTraining complete.")