forked from neural-nuts/image-caption-generator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
caption_generator.py
351 lines (318 loc) · 15.1 KB
/
caption_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
import matplotlib.pyplot as plt
from random import shuffle
from convfeatures import *
import tensorflow as tf
from PIL import Image
import numpy as np
import pickle
import sys
import os
class Caption_Generator():
def __init__(self, config, data=None):
self.dim_imgft = np.int(config.dim_imgft)
self.embedding_size = np.int(config.embedding_size)
self.num_hidden = np.int(config.num_hidden)
self.batch_size = np.int(config.batch_size)
self.num_timesteps = np.int(config.num_timesteps)
self.max_len = config.max_len
self.word_threshold = config.word_threshold
self.bias_init = config.bias_init
self.xavier_init = config.xavier_init
self.dropout = config.dropout
self.lstm_keep_prob = config.lstm_keep_prob
self.beta = config.beta_l2
self.mode = config.mode
self.batch_decode = config.batch_decode
self.learning_rate = config.learning_rate
self.resume = config.resume
self.savedecoder = config.savedecoder
self.saveencoder = config.saveencoder
if self.mode == 'train':
self.vocab, self.wtoidx, self.features, self.captions = data
self.num_batch = int(self.features.shape[0]) / self.batch_size
print "Converting Captions to IDs"
self.captions = self.Words_to_IDs(self.wtoidx, self.captions)
if self.resume == 1:
self.vocab = np.load("Dataset/vocab.npy").tolist()
self.wtoidx = np.load("Dataset/wordmap.npy").tolist()
self.current_epoch = 0
self.current_step = 0
if self.resume is 1 or self.mode == 'test':
if os.path.isfile('model/save.npy'):
self.current_epoch, self.current_step = np.load(
"model/save.npy")
else:
print "No Checkpoints, Restarting Training.."
self.resume = 0
self.nb_epochs = config.nb_epochs
if self.mode == 'test':
self.vocab = np.load("Dataset/vocab.npy").tolist()
self.wtoidx = np.load("Dataset/wordmap.npy").tolist()
self.max_words = np.int(len(self.wtoidx))
self.idxtow = dict(zip(self.wtoidx.values(), self.wtoidx.keys()))
self.model()
self.image_features, self.IDs = self.build_decode_graph()
self.load_image=config.load_image
if not self.batch_decode:
self.io = build_prepro_graph(config.inception_path)
self.sess = self.init_decode()
return
self.max_words = np.int(len(self.wtoidx))
self.idxtow = dict(zip(self.wtoidx.values(), self.wtoidx.keys()))
self.model()
def Words_to_IDs(self, wtoidx, caption_batch):
for i, caption in enumerate(caption_batch):
cap = []
for word in caption.split():
try:
cap.append(wtoidx[word])
except KeyError:
cap.append(wtoidx["<UNK>"])
caption_batch[i] = np.array(cap)
return np.vstack(caption_batch)
def IDs_to_Words(self, idxtow, ID_batch):
return [idxtow[word] for IDs in ID_batch for word in IDs]
def generate_mask(self, ID_batch, wtoidx):
nonpadded = map(lambda x: len(
ID_batch[0]) - x.count(wtoidx["<PAD>"]), ID_batch.tolist())
ID_batch = np.zeros((ID_batch.shape[0], self.max_len + 2))
for ind, row in enumerate(ID_batch):
row[:nonpadded[ind]] = 1
return ID_batch
def get_next_batch(self):
batch_size = self.batch_size
for batch_idx in range(0, len(self.features), batch_size):
images_batch = self.features[batch_idx:batch_idx + batch_size]
caption_batch = self.captions[batch_idx:batch_idx + batch_size]
# print caption_batch
yield images_batch, caption_batch
# From NeuralTalk by Andrej Karpathy
def init_bias(self):
bias_init_vector = np.array(
[1.0 * self.vocab[self.idxtow[i]] for i in self.idxtow])
bias_init_vector /= np.sum(bias_init_vector)
bias_init_vector = np.log(bias_init_vector)
bias_init_vector -= np.max(bias_init_vector)
return bias_init_vector
def assign_weights(self, dim1, dim2=None, name=None, Xavier=False):
if Xavier:
weight_initializer = tf.contrib.layers.xavier_initializer()
return tf.get_variable(
name, [dim1, dim2], initializer=weight_initializer)
return tf.Variable(tf.truncated_normal([dim1, dim2]),
name=name)
def assign_biases(self, dim, name, bias_init=False):
if bias_init:
return tf.Variable(self.init_bias().astype(np.float32), name=name)
return tf.Variable(tf.zeros([dim]), name=name)
def model(self):
self.word_embedding = {
"weights": self.assign_weights(
self.max_words,
self.embedding_size,
'Weight_emb'),
"biases": self.assign_biases(
self.embedding_size,
"Bias_emb")}
self.image_embedding = {
"weights": self.assign_weights(
self.dim_imgft,
self.embedding_size,
'Weight_img_emb'),
"biases": self.assign_biases(
self.embedding_size,
'Bias_img_emb')}
self.target_word = {
"weights": self.assign_weights(
self.embedding_size,
self.max_words,
'Weight_target'),
"biases": self.assign_biases(
self.max_words,
'Bias_target', bias_init=self.bias_init)}
self.lstm_cell = tf.contrib.rnn.BasicLSTMCell(self.num_hidden)
if self.dropout:
self.lstm_cell = tf.contrib.rnn.DropoutWrapper(
self.lstm_cell, self.lstm_keep_prob, self.lstm_keep_prob)
self.inp_dict = {
"features": tf.placeholder(
tf.float32, [self.batch_size, self.dim_imgft], name="Train_Features"),
"captions": tf.placeholder(
tf.int32, [self.batch_size, self.num_timesteps], name="Train_Captions"),
"mask": tf.placeholder(
tf.float32, [self.batch_size, self.num_timesteps], name="Train_Mask")
}
def create_feed_dict(self, Ids, features, mask, mode="train"):
feed_dict = {}
feed_dict[self.inp_dict['captions']] = Ids
feed_dict[self.inp_dict['features']] = features
feed_dict[self.inp_dict['mask']] = mask
return feed_dict
def build_train_graph(self):
init_c = tf.zeros([self.batch_size, self.lstm_cell.state_size[0]])
init_h = tf.zeros([self.batch_size, self.lstm_cell.state_size[1]])
initial_state = (init_c, init_h)
image_emb = tf.matmul(self.inp_dict["features"], self.image_embedding[
'weights']) + self.image_embedding['biases']
with tf.variable_scope("LSTM"):
output, state = self.lstm_cell(image_emb, initial_state)
loss = 0.0
for i in range(1, self.num_timesteps):
batch_embed = tf.nn.embedding_lookup(
self.word_embedding['weights'], self.inp_dict['captions'][
:, i - 1]) + self.word_embedding['biases']
tf.get_variable_scope().reuse_variables()
output, state = self.lstm_cell(batch_embed, state)
words = tf.reshape(self.inp_dict['captions'][
:, i], shape=[self.batch_size, 1])
onehot_encoded = tf.one_hot(indices=words, depth=len(
self.wtoidx), on_value=1, off_value=0, axis=-1)
onehot_encoded = tf.reshape(onehot_encoded, shape=[
self.batch_size, self.max_words])
target_logit = tf.matmul(
output, self.target_word['weights']) + self.target_word['biases']
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(
logits=target_logit, labels=onehot_encoded)
cross_entropy = cross_entropy * self.inp_dict["mask"][:, i]
current_loss = tf.reduce_sum(cross_entropy)
loss = loss + current_loss
loss = loss / tf.reduce_sum(self.inp_dict["mask"][:, 1:])
# introducing L2 regularization in Loss/Cost Function
# self.beta=0
#l2_loss = self.beta * sum([tf.nn.l2_loss(tf_var) for tf_var in tf.trainable_variables() if not "Bias" in tf_var.name])
#loss = tf.reduce_mean(loss+l2_loss)
return loss, self.inp_dict
def build_decode_graph(self):
image_features = tf.placeholder(
tf.float32, [1, self.dim_imgft], name='Input_Features')
image_emb = tf.matmul(image_features, self.image_embedding[
'weights']) + self.image_embedding['biases']
init_c = tf.zeros([1, self.lstm_cell.state_size[0]])
init_h = tf.zeros([1, self.lstm_cell.state_size[1]])
initial_state = (init_c, init_h)
IDs = []
with tf.variable_scope("LSTM"):
output, state = self.lstm_cell(image_emb, initial_state)
pred_ID = tf.nn.embedding_lookup(
self.word_embedding['weights'], [
self.wtoidx["<S>"]]) + self.word_embedding['biases']
for i in range(self.num_timesteps):
tf.get_variable_scope().reuse_variables()
output, state = self.lstm_cell(pred_ID, state)
logits = tf.matmul(output, self.target_word[
"weights"]) + self.target_word["biases"]
predicted_next_idx = tf.argmax(logits, axis=1)
pred_ID = tf.nn.embedding_lookup(
self.word_embedding['weights'], predicted_next_idx)
pred_ID = pred_ID + self.word_embedding['biases']
predicted_next_idx = tf.cast(predicted_next_idx, tf.int32, name="word_"+str(i))
IDs.append(predicted_next_idx)
with open("model/Decoder/DecoderOutputs.txt", 'w') as f:
for name in IDs:
f.write(name.name.split(":0")[0] + "\n")
return image_features, IDs
def train(self, loss, inp_dict):
self.loss = loss
self.inp_dict = inp_dict
saver = tf.train.Saver(max_to_keep=10)
global_step = tf.Variable(
self.current_step,
name='global_step')
starter_learning_rate = self.learning_rate
learning_rate = tf.train.exponential_decay(
starter_learning_rate, global_step, 100000, 0.95, staircase=True)
optimizer = tf.train.AdamOptimizer(learning_rate).minimize(
self.loss, global_step=global_step)
tf.summary.scalar("loss", self.loss)
tf.summary.scalar("learning_rate", learning_rate)
summary_op = tf.summary.merge_all()
with tf.Session() as sess:
print "Initializing Training"
init = tf.global_variables_initializer()
sess.run(init)
if self.resume is 1:
print "Loading Previously Trained Model"
print self.current_epoch, "Out of", self.nb_epochs, "Completed in previous run."
try:
ckpt_file = "./model/model.ckpt-" + str(self.current_step)
saver.restore(sess, ckpt_file)
print "Resuming Training"
except Exception as e:
print str(e).split('\n')[0]
print "Checkpoints not found"
sys.exit(0)
writer = tf.summary.FileWriter(
"model/log_dir/", graph=tf.get_default_graph())
for epoch in range(self.current_epoch, self.nb_epochs):
loss=[]
idx = np.random.permutation(self.features.shape[0])
self.captions = self.captions[idx]
self.features = self.features[idx]
batch_iter = self.get_next_batch()
for batch_idx in xrange(self.num_batch):
batch_features, batch_Ids = batch_iter.next()
batch_mask = self.generate_mask(batch_Ids, self.wtoidx)
run = [global_step, optimizer, self.loss, summary_op]
feed_dict = self.create_feed_dict(
batch_Ids, batch_features, batch_mask)
step, _, current_loss, summary = sess.run(
run, feed_dict=feed_dict)
writer.add_summary(summary, step)
if step % 100 == 0:
print epoch, ": Global Step:", step, "\tLoss: ", current_loss
loss.append(current_loss)
print
print "Epoch: ", epoch, "\tAverage Loss: ", np.mean(loss)
print "\nSaving Model..\n"
saver.save(sess, "./model/model.ckpt", global_step=global_step)
np.save("model/save", (epoch, step))
def init_decode(self):
saver = tf.train.Saver()
ckpt_file = "./model/model.ckpt-" + str(self.current_step) #str(89994)
sess = tf.Session()
init = tf.global_variables_initializer()
sess.run(init)
saver.restore(sess, ckpt_file)
return sess
def decode(self, path):
features = get_features(self.sess, self.io, path, self.saveencoder)
caption_IDs = self.sess.run(
self.IDs, feed_dict={
self.image_features: features})
sentence = " ".join(self.IDs_to_Words(self.idxtow, caption_IDs))
sentence = sentence.split("</S>")[0]
if self.load_image:
plt.imshow(Image.open(path))
plt.axis("off")
plt.title(sentence, fontsize='10', loc='left')
name=path.split("/")[-1]
plt.savefig("./results/"+"gen_"+name)
plt.show()
else:
print sentence
if self.savedecoder:
saver = tf.train.Saver()
saver.save(self.sess, "model/Decoder/model.ckpt")
#return path, sentence
def batch_decoder(self, filenames, features):
saver = tf.train.Saver()
ckpt_file = "./model/model.ckpt-" + str(self.current_step)
sentences = []
filenames = np.unique(filenames)
with open("model/Decoder/Generated_Captions.txt", 'w') as f:
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
saver.restore(sess, ckpt_file)
for i, feat in enumerate(features):
feat = np.reshape(feat, newshape=(1, 1536))
caption_IDs = sess.run(
self.IDs, feed_dict={
self.image_features: feat})
sentence = " ".join(
self.IDs_to_Words(
self.idxtow, caption_IDs))
sentence = sentence.split("</S>")[0]
if i % 1000 == 0:
print "Progress", i, "out of", features.shape[0]
f.write(filenames[i] + "\t" + sentence + "\n")