forked from midas-research/fast-eacl
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluator.py
94 lines (93 loc) · 3.5 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
import math
import numpy as np
from sklearn.metrics import ndcg_score
def evaluate(prediction, ground_truth, mask, report=False):
assert ground_truth.shape == prediction.shape, 'shape mis-match'
performance = {}
# performance['mse'] = np.linalg.norm((prediction - ground_truth) * mask)**2/ np.sum(mask)
mrr_top = 0.0
all_miss_days_top = 0
bt_long = 1.0
bt_long5 = 1.0
bt_long10 = 1.0
top_1_ground_truth = []
top_5_ground_truth = []
top_10_ground_truth = []
sharpe_li = []
sharpe_li5 = []
for i in range(prediction.shape[1]):
rank_gt = np.argsort(ground_truth[:, i])
gt_top1 = set()
gt_top5 = set()
gt_top10 = set()
for j in range(1, prediction.shape[0] + 1):
cur_rank = rank_gt[-1 * j]
if mask[cur_rank][i] < 0.5:
continue
if len(gt_top1) < 1:
gt_top1.add(cur_rank)
if len(gt_top5) < 5:
gt_top5.add(cur_rank)
if len(gt_top10) < 10:
gt_top10.add(cur_rank)
rank_pre = np.argsort(prediction[:, i])
pre_top1 = set()
pre_top5 = set()
pre_top10 = set()
for j in range(1, prediction.shape[0] + 1):
cur_rank = rank_pre[-1 * j]
if mask[cur_rank][i] < 0.5:
continue
if len(pre_top1) < 1:
pre_top1.add(cur_rank)
if len(pre_top5) < 5:
pre_top5.add(cur_rank)
if len(pre_top10) < 10:
pre_top10.add(cur_rank)
performance['ndcg'] = ndcg_score(np.array(list(gt_top5)).reshape(1,-1), np.array(list(pre_top5)).reshape(1,-1))
# performance['ndcg10'] = ndcg_score(np.array(list(gt_top10)).reshape(1,-1), np.array(list(pre_top10)).reshape(1,-1))
top1_pos_in_gt = 0
for j in range(1, prediction.shape[0] + 1):
cur_rank = rank_gt[-1 * j]
if mask[cur_rank][i] < 0.5:
continue
else:
top1_pos_in_gt += 1
if cur_rank in pre_top1:
break
if top1_pos_in_gt == 0:
all_miss_days_top += 1
else:
mrr_top += 1.0 / top1_pos_in_gt
aaabbb = ground_truth[list(gt_top1)[0]][i]
top_1_ground_truth.append(aaabbb)
real_ret_rat_top = ground_truth[list(pre_top1)[0]][i]
bt_long += real_ret_rat_top
sharpe_li.append(real_ret_rat_top)
real_ret_rat_top5 = 0
for pre in pre_top5:
real_ret_rat_top5 += ground_truth[pre][i]
real_ret_rat_top5 /= 5
bt_long5 += real_ret_rat_top5
sharpe_li5.append(real_ret_rat_top)
real_ret_rat_top5_gt = 0
for pre in gt_top5:
real_ret_rat_top5_gt += ground_truth[pre][i]
real_ret_rat_top5_gt /= 5
top_5_ground_truth.append(real_ret_rat_top5_gt)
real_ret_rat_top10_gt = 0
real_ret_rat_top10 = 0
for pre in gt_top10:
real_ret_rat_top10_gt += ground_truth[pre][i]
real_ret_rat_top10_gt /= 10
for pre in pre_top10:
real_ret_rat_top10 += ground_truth[pre][i]
real_ret_rat_top10 /= 10
bt_long10 += real_ret_rat_top10
performance['mrr'] = mrr_top / (prediction.shape[1] - all_miss_days_top)
# performance['irr'] = bt_long
performance['irr'] = bt_long5
# performance['irr10'] = bt_long10
sharpe_li = np.array(sharpe_li)
performance['sr'] = (np.mean(sharpe_li)/np.std(sharpe_li))*15.87
return performance