-
Notifications
You must be signed in to change notification settings - Fork 2
/
sex-check-analysis.R
586 lines (506 loc) · 20.6 KB
/
sex-check-analysis.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
# WORKFLOW for CIREN TCGA SEX chromosomes vs Survival
# Import libraries to use
library(tidyverse)
library(ggplot2)
library(plotly)
# Specify which TCGA study to analyze
study = "LGG"
# Set directories
setwd("~/Desktop/2023-Fall-CIREN/")
filepath <- "/data/CEM/shared/public_data/TCGA_RNAseq_counts/"
counts_fname <- paste("TCGA", study, "TPM.tsv", sep = "-")
meta_fname <- paste("TCGA", study, "META.tsv", sep = "-")
counts_path <- paste(filepath, counts_fname, sep = "")
meta_path <- paste(filepath, meta_fname, sep = "")
# Read in data
counts <- read.delim(counts_path, row.names = 1)
metadf <- read.delim(meta_path, row.names = 1)
# Modify row id's in metadf to correspond to similar format in counts
meta_ids <- rownames(metadf)
meta_ids <- gsub("[-]", ".", meta_ids)
rownames(metadf) <- meta_ids
# Genes under consideration for inference:
# chromosome Y
# AMELY ENSG00000099721
# DDX3Y ENSG00000067048
# EIF1AY ENSG00000198692
# KDM5D ENSG00000012817
# NLGN4Y ENSG00000165246
# PRKY ENSG00000099725
# TMSB4Y ENSG00000154620
# USP9Y ENSG00000114374
# UTY ENSG00000183878
# ZFY ENSG00000067646
# SRY ENSG00000184895
# TSPY (may be challenging due to multicopy, there are 10+, left out)
#
# chromosome X
# XIST ENSG00000229807
# AR ENSG00000169083
ychr_genes <- c("ENSG00000099721", "ENSG00000067048", "ENSG00000198692",
"ENSG00000012817", "ENSG00000165246", "ENSG00000099725",
"ENSG00000154620", "ENSG00000114374", "ENSG00000183878",
"ENSG00000067646", "ENSG00000184895")
ychr_gnames <- c("AMELY", "DDX3Y", "EIF1AY", "KDM5D", "NLGN4Y", "PRKY",
"TMSB4Y", "USP9Y", "UTY", "ZFY", "SRY")
xchr_genes <- c("ENSG00000229807", "ENSG00000169083")
xchr_gnames <- c("XIST", "AR")
ychr_counts <- counts[ychr_genes, ]
xchr_counts <- counts[xchr_genes, ]
## may want a version of new_counts for x and y?:
new_counts1 <- data.frame(t(subset(xchr_counts,
select = -c(gene_name, gene_type))))
colnames(new_counts1) <- xchr_counts[, 1]
new_counts2 <- data.frame(t(subset(ychr_counts,
select = -c(gene_name, gene_type))))
colnames(new_counts2) <- ychr_counts[, 1]
new_counts <- data.frame(c(new_counts1, new_counts2))
row.names(new_counts) <- row.names(new_counts1)
################################################
###---CHECK FOR REPEATS AND LOOK AT VALUES---###
################################################
# Return list of row labels (ids):
id_list <- rownames(new_counts)
# Extract file and case uuid's from combo:
splt_id_list <- strsplit(id_list, "[_]")
c_uuid <- vector(mode = "character", length = length(id_list))
f_uuid <- vector(mode = "character", length = length(id_list))
for (j in seq_len(length(id_list))) {
f_uuid[j] <- splt_id_list[[j]][1]
c_uuid[j] <- splt_id_list[[j]][2]
}
# Organize ids by case uuid (for viewing)
id_sets <- split(id_list, c_uuid)
repeats_df <- data.frame()
rep_cases_list <- list()
c_uuid <- unique(c_uuid)
for (x in c_uuid) {
if (length(id_sets[[x]]) > 1) {
# extract labels needed for the next step
rows_keep <- id_sets[[x]]
# PUTTING THESE INTO A SEPARATE DF TO *LOOK* AT:
repeats_df <- bind_rows(repeats_df, new_counts[rows_keep[1], ])
repeats_df <- bind_rows(repeats_df, new_counts[rows_keep[2], ])
if (length(id_sets[[x]]) > 2) {
repeats_df <- bind_rows(repeats_df, new_counts[rows_keep[3], ])
}
rep_cases_list <- c(rep_cases_list, x)
}
}
# repeats_df dataframe to tsv
repeats_fname <- paste("TCGA", study, "repeat_samples_TPM_counts.tsv", sep = "_")
write_tsv(
repeats_df %>% rownames_to_column(),
repeats_fname,
na = "NA",
append = FALSE,
col_names = TRUE,
quote = "none",
eol = "\n",
num_threads = readr_threads(),
progress = show_progress()
)
###################################################
###---SEX CHECK OF THE SAMPLES---###
###################################################
sex_check <- data.frame(matrix(0, length(c_uuid), 5),
row.names = c_uuid)
colnames(sex_check) <- c("status_XIST", "status_Y", "annotated_sex",
"survival_status", "time_to_status")
dummy_df <- data.frame(matrix(0, length(id_list), 5))
counts_plus <- data.frame(c(new_counts, dummy_df))
row.names(counts_plus) <- row.names(new_counts)
colnames(counts_plus) <- c(colnames(new_counts), "status_XIST", "status_Y",
"annotated_sex", "survival", "followed")
### THE CODE BELOW HANDLES ONLY TWO SAMPLES PER CASE
for (i in c_uuid){
sex_check[i, "annotated_sex"] <- metadf[i, "mf_list"]
if (metadf[i, "status_list"] == "Alive") {
sex_check[i, "survival_status"] <- 0
sex_check[i, "time_to_status"] <- metadf[i, "follow_list"]
} else {
sex_check[i, "survival_status"] <- 1
sex_check[i, "time_to_status"] <- metadf[i, "surv_times"]
}
# Check if there are replicates and if so, handle those first:
if (length(id_sets[[i]]) > 1) {
iid1 <- id_sets[[i]][1]
iid2 <- id_sets[[i]][2]
counts_plus[iid1, "annotated_sex"] <- metadf[i, "mf_list"]
counts_plus[iid2, "annotated_sex"] <- metadf[i, "mf_list"]
counts_plus[iid1, "survival"] <- metadf[i, "surv_times"]
counts_plus[iid2, "survival"] <- metadf[i, "surv_times"]
counts_plus[iid1, "followed"] <- metadf[i, "follow_list"]
counts_plus[iid2, "followed"] <- metadf[i, "follow_list"]
# Evaluate each replicate individually
# -- Y chromosome:
if (all(new_counts[iid1, "DDX3Y"] < 1.0,
new_counts[iid1, "USP9Y"] < 1.0,
new_counts[iid1, "UTY"] < 1.0,
new_counts[iid1, "ZFY"] < 1.0)) {
counts_plus[iid1, "status_Y"] <- "no"
} else {
counts_plus[iid1, "status_Y"] <- "yes"
}
if (all(new_counts[iid2, "DDX3Y"] < 1.0,
new_counts[iid2, "USP9Y"] < 1.0,
new_counts[iid2, "UTY"] < 1.0,
new_counts[iid2, "ZFY"] < 1.0)) {
counts_plus[iid2, "status_Y"] <- "no"
} else {
counts_plus[iid2, "status_Y"] <- "yes"
}
# -- XIST:
if (new_counts[iid1, "XIST"] > 1.0) {
counts_plus[iid1, "status_XIST"] <- "yes"
} else {
counts_plus[iid1, "status_XIST"] <- "no"
}
if (new_counts[iid2, "XIST"] > 1.0) {
counts_plus[iid2, "status_XIST"] <- "yes"
} else {
counts_plus[iid2, "status_XIST"] <- "no"
}
# Now evaluate the *pairs* of replicates (only written for 2 reps!)
if ((counts_plus[iid1, "status_Y"] == counts_plus[iid2, "status_Y"]) &&
(counts_plus[iid1, "status_XIST"] == counts_plus[iid2, "status_XIST"])) {
# -- If the pairs match, take the first one as the *case* status
sex_check[i, "status_Y"] <- counts_plus[iid1, "status_Y"]
sex_check[i, "status_XIST"] <- counts_plus[iid1, "status_XIST"]
# -- If the pairs DO NOT match, check the three possibilities:
# -- 1. Do both look totally different?
# (i.e. "yes, no" vs "no, yes" - or - "yes yes" vs "no no")
} else if ((counts_plus[iid1, "status_Y"] != counts_plus[iid2, "status_Y"]) &&
(counts_plus[iid1, "status_XIST"] != counts_plus[iid2, "status_XIST"])) {
# this is an unexpected edge case, so for now, just "flag" it as unusual
sex_check[i, "status_Y"] <- "FLAG"
sex_check[i, "status_XIST"] <- "FLAG"
# -- 2. The first pair has "yes yes" or "no no":
} else if (counts_plus[iid1, "status_XIST"] == counts_plus[iid1, "status_Y"]) {
# Take "yes XIST, yes Y" or "no XIST, no Y" as the overall case status
sex_check[i, "status_Y"] <- counts_plus[iid1, "status_Y"]
sex_check[i, "status_XIST"] <- counts_plus[iid1, "status_XIST"]
# -- 3. The second pair has "yes yes" or "no no":
} else if (counts_plus[iid2, "status_XIST"] == counts_plus[iid2, "status_Y"]) {
# Take "yes XIST, yes Y" or "no XIST, no Y" as the overall case status
sex_check[i, "status_Y"] <- counts_plus[iid2, "status_Y"]
sex_check[i, "status_XIST"] <- counts_plus[iid2, "status_XIST"]
} else {
# That should have handled all the cases, but just in case
# something goes wrong with the evaluation of the conditionals
print("we missed something")
}
# Now look at cases with only a single sample:
} else {
iid <- id_sets[[i]]
counts_plus[iid, "annotated_sex"] <- metadf[i, "mf_list"]
counts_plus[iid, "survival"] <- metadf[i, "surv_times"]
counts_plus[iid, "followed"] <- metadf[i, "follow_list"]
if (all(new_counts[iid, "DDX3Y"] < 1.0,
new_counts[iid, "USP9Y"] < 1.0,
new_counts[iid, "UTY"] < 1.0,
new_counts[iid, "ZFY"] < 1.0)) {
counts_plus[iid, "status_Y"] <- "no"
sex_check[i, "status_Y"] <- "no"
} else {
counts_plus[iid, "status_Y"] <- "yes"
sex_check[i, "status_Y"] <- "yes"
}
if (new_counts[iid, "XIST"] > 1.0) {
counts_plus[iid, "status_XIST"] <- "yes"
sex_check[i, "status_XIST"] <- "yes"
} else {
counts_plus[iid, "status_XIST"] <- "no"
sex_check[i, "status_XIST"] <- "no"
}
}
}
## THE CODE ABOVE HANDLES ONLY UP TO TWO SAMPLES PER CASE, BUT
## CASE d6486001.240a.455a.980c.e06c25c61fa5 HAS THREE SAMPLES.
## THEY ARE: id_sets[["d6486001.240a.455a.980c.e06c25c61fa5"]]
## "X78a0f8f9.e010.4a10.978c.94c8bb9157cd_d6486001.240a.455a.980c.e06c25c61fa5"
## "X7b90b9fd.0015.47b9.9148.f040c1cfcb5a_d6486001.240a.455a.980c.e06c25c61fa5"
## "c7a64911.e1b0.4615.9521.98d4cd4a9882_d6486001.240a.455a.980c.e06c25c61fa5"
### USING A MANUAL APPROACH TO COMPLETE THE CORRESPONDING COUNTS_PLUS DATAFRAME
third_id <- "c7a64911.e1b0.4615.9521.98d4cd4a9882_d6486001.240a.455a.980c.e06c25c61fa5"
tcase_id <- "d6486001.240a.455a.980c.e06c25c61fa5"
other_id <- "X7b90b9fd.0015.47b9.9148.f040c1cfcb5a_d6486001.240a.455a.980c.e06c25c61fa5"
counts_plus[third_id, "status_XIST"] <- counts_plus[other_id, "status_XIST"]
counts_plus[third_id, "status_Y"] <- counts_plus[other_id, "status_Y"]
counts_plus[third_id, "annotated_sex"] <- metadf[tcase_id, "mf_list"]
counts_plus[third_id, "survival"] <- metadf[tcase_id, "surv_times"]
counts_plus[third_id, "followed"] <- metadf[tcase_id, "follow_list"]
###################################################
###---WRITE DATAFRAMES TO TSV FILES---###
###################################################
# sex_check dataframe to tsv
sex_check_fname <- paste("TCGA", study, "case_XIST-Y_outcomes.tsv", sep = "_")
write_tsv(
sex_check %>% rownames_to_column(),
sex_check_fname,
na = "NA",
append = FALSE,
col_names = TRUE,
quote = "none",
eol = "\n",
num_threads = readr_threads(),
progress = show_progress()
)
# counts_plus dataframe to tsv
counts_plus_fname <- paste("TCGA", study, "sample_XIST-Y_outcomes.tsv", sep = "_")
write_tsv(
counts_plus %>% rownames_to_column(),
counts_plus_fname,
na = "NA",
append = FALSE,
col_names = TRUE,
quote = "none",
eol = "\n",
num_threads = readr_threads(),
progress = show_progress()
)
###################################################
###---SURVIVAL ANALYSIS---###
###################################################
library(dplyr)
library(survival)
library(survminer)
sex_check_m <- sex_check %>% filter(annotated_sex == "male")
df_points2 <- sex_check_m %>%
transmute(XIST_Y = paste(sex_check_m$status_XIST, "XIST_",
sex_check_m$status_Y, "Y", sep = ""))
sex_check_m <- cbind(sex_check_m, df_points2)
sex_check_f <- sex_check %>% filter(annotated_sex == "female")
df_points3 <- sex_check_f %>%
transmute(XIST_Y = paste(sex_check_f$status_XIST, "XIST_",
sex_check_f$status_Y, "Y", sep = ""))
sex_check_f <- cbind(sex_check_f, df_points3)
km_m <- survfit(Surv(time_to_status, survival_status) ~ XIST_Y, data = sex_check_m)
km_f <- survfit(Surv(time_to_status, survival_status) ~ XIST_Y, data = sex_check_f)
km_m_plot_fname <- paste("KM", study, "Male.png", sep = "_")
png(km_m_plot_fname)
km_m %>%
ggsurvplot(
data = sex_check_m,
fun = "pct",
# linetype = "strata", # Change line type by groups
# pval = TRUE, # Not sure if want
# conf.int = TRUE, # Not sure if want
risk.table = TRUE,
fontsize = 3, # used in risk table
surv.median.line = "hv", # median horizontal and vertical ref lines
ggtheme = theme_light(),
palette = c("goldenrod", "sienna", "tomato", "cadetblue"),
title = "LIHC - Male - Kaplan-Meier Survival Function Estimate",
legend.title = "",
legend.labs = levels(sex_check_m$XIST_Y)
)
dev.off()
km_f_plot_fname <- paste("KM", study, "Female.png", sep = "_")
png(km_f_plot_fname)
km_f %>%
ggsurvplot(
data = sex_check_f,
fun = "pct",
# linetype = "strata", # Change line type by groups
# pval = TRUE, # Not sure if want
# conf.int = TRUE, # Not sure if want
risk.table = TRUE,
fontsize = 3, # used in risk table
surv.median.line = "hv", # median horizontal and vertical ref lines
ggtheme = theme_light(),
palette = c("goldenrod", "sienna", "tomato","cadetblue"),
title = "LIHC - Female - Kaplan-Meier Survival Function Estimate",
legend.title = "",
legend.labs = levels(sex_check_f$XIST_Y)
)
dev.off()
###################################################
###---COUNT GROUP MEMBERSHIP FOR TABLE---###
###################################################
# among those annotated "male":
n_male_nxny <- nrow(sex_check_m[sex_check_m$XIST_Y == "noXIST_noY", ])
n_male_yxyy <- nrow(sex_check_m[sex_check_m$XIST_Y == "yesXIST_yesY", ])
n_male_nxyy <- nrow(sex_check_m[sex_check_m$XIST_Y == "noXIST_yesY", ])
n_male_yxny <- nrow(sex_check_m[sex_check_m$XIST_Y == "yesXIST_noY", ])
# among those annotated "female":
n_female_nxny <- nrow(sex_check_f[sex_check_f$XIST_Y == "noXIST_noY", ])
n_female_yxyy <- nrow(sex_check_f[sex_check_f$XIST_Y == "yesXIST_yesY", ])
n_female_nxyy <- nrow(sex_check_f[sex_check_f$XIST_Y == "noXIST_yesY", ])
n_female_yxny <- nrow(sex_check_f[sex_check_f$XIST_Y == "yesXIST_noY", ])
#####################################################
###-VIOLIN PLOTS OF TPM COUNTS OF INTEREST BY M/F-###
###-TO SHOW IF THRESHOLD WAS CHOSEN APPROPRIATELY-###
#####################################################
library(patchwork)
violin1_fname <- paste("Log_Violin", study, "TPM_XIST.png", sep = "_")
png(violin1_fname)
pXIST <- ggplot(data = counts_plus, aes(factor(annotated_sex), XIST))
pXIST <- pXIST + geom_violin() + scale_y_continuous(trans = "log10") +
geom_jitter(height = 0, width = 0.1)
dev.off()
violin2_fname <- paste("Log_Violin", study, "TPM_DDX3Y.png", sep = "_")
png(violin2_fname)
pDDX3Y <- ggplot(data = counts_plus, aes(factor(annotated_sex), DDX3Y))
pDDX3Y <- pDDX3Y + geom_violin() + scale_y_continuous(trans = "log10") +
geom_jitter(height = 0, width = 0.1)
dev.off()
violin3_fname <- paste("Log_Violin", study, "TPM_USP9Y.png", sep = "_")
png(violin3_fname)
pUSP9Y <- ggplot(data = counts_plus, aes(factor(annotated_sex), USP9Y))
pUSP9Y <- pUSP9Y + geom_violin() + scale_y_continuous(trans = "log10") +
geom_jitter(height = 0, width = 0.1)
dev.off()
violin4_fname <- paste("Log_Violin", study, "TPM_UTY.png", sep = "_")
png(violin4_fname)
pUTY <- ggplot(data = counts_plus, aes(factor(annotated_sex), UTY))
pUTY <- pUTY + geom_violin() + scale_y_continuous(trans = "log10") +
geom_jitter(height = 0, width = 0.1)
dev.off()
violin5_fname <- paste("Log_Violin", study, "TPM_ZFY.png", sep = "_")
png(violin5_fname)
pZFY <- ggplot(data = counts_plus, aes(factor(annotated_sex), ZFY))
pZFY <- pZFY + geom_violin() + scale_y_continuous(trans = "log10") +
geom_jitter(height = 0, width = 0.1)
dev.off()
violin6_fname <- paste("Log_Violin", study, "TPM_All.png", sep = "_")
png(violin6_fname)
p_all <-pXIST | (pDDX3Y | pUSP9Y) / (pUTY | pZFY)
p_all
dev.off()
# Violins in plotly for interactive viewing
figDDX3Y <- counts_plus %>%
plot_ly(
x = ~annotated_sex, y = ~DDX3Y,
split = ~annotated_sex,
type = "violin",
box = list(visible = TRUE),
meanline = list(visible = TRUE)
) %>%
layout(
yaxis = list(type = "log",
range = c(-3, 3))
)
figUSP9Y <- counts_plus %>%
plot_ly(
x = ~annotated_sex, y = ~USP9Y,
split = ~annotated_sex,
type = "violin",
box = list(visible = TRUE),
meanline = list(visible = TRUE)
) %>%
layout(
yaxis = list(type = "log",
range = c(-3, 3))
)
figUTY <- counts_plus %>%
plot_ly(
x = ~annotated_sex, y = ~UTY,
split = ~annotated_sex,
type = "violin",
box = list(visible = TRUE),
meanline = list(visible = TRUE)
) %>%
layout(
yaxis = list(type = "log",
range = c(-3, 3))
)
figZFY <- counts_plus %>%
plot_ly(
x = ~annotated_sex, y = ~ZFY,
split = ~annotated_sex,
type = "violin",
box = list(visible = TRUE),
meanline = list(visible = TRUE)
) %>%
layout(
yaxis = list(type = "log",
range = c(-3, 3))
)
figXIST <- counts_plus %>%
plot_ly(
x = ~annotated_sex, y = ~XIST,
split = ~annotated_sex,
type = "violin",
box = list(visible = TRUE),
meanline = list(visible = TRUE)
) %>%
layout(
yaxis = list(type = "log",
range = c(-3, 3))
)
fig <- subplot(figDDX3Y, figUSP9Y, figUTY, figZFY, figXIST,
nrows = 3, shareY = TRUE) %>%
layout(title = "Distribution of TPM counts for genes of interest by sex",
plot_bgcolor = "#e5ecf6",
showlegend = FALSE
)
fig
#####################################################
###---LINE PLOTS OF TPM COUNTS FOR THE ODD COMBOS-###
###---OF LOW XIST & LOW Y OR HIGH XIST & HIGH Y---###
###---TO ASSESS FOR ANY PATTERNS WITHIN SAMPLES---###
#####################################################
# Two Groups of Interest:
# 1. no XIST and no Y
nxny_counts <- counts_plus %>% filter(status_XIST == "no" & status_Y == "no")
# 2. yes XIST and yes Y
yxyy_counts <- counts_plus %>% filter(status_XIST == "yes" & status_Y == "yes")
# Prepping list of gene names for plot functions below:
gene_names <- c("XIST", "DDX3Y", "USP9Y", "UTY", "ZFY")
# Reshape to work well with plot functions:
nxny_plots <- reshape(nxny_counts,
varying = gene_names,
drop = c("AR", "AMELY", "EIF1AY", "KDM5D",
"NLGN4Y", "PRKKY", "TMSB4Y", "SRY",
"status_XIST", "status_Y",
"survival", "followed"),
v.names = "TPM_counts",
timevar = "gene_names",
times = gene_names,
ids = row.names(nxny_counts),
direction = "long")
yxyy_plots <- reshape(yxyy_counts,
varying = gene_names,
drop = c("AR", "AMELY", "EIF1AY", "KDM5D",
"NLGN4Y", "PRKKY", "TMSB4Y", "SRY",
"status_XIST", "status_Y",
"survival", "followed"),
v.names = "TPM_counts",
timevar = "gene_names",
times = gene_names,
ids = row.names(yxyy_counts),
direction = "long")
# Plot the lines
# Linear y-axis
lineplot1_fname <- paste("TPM", study, "LowXIST-LowY_Color-by-Sex.png", sep = "_")
png(lineplot1_fname)
ggplot(data = nxny_plots, aes(x = gene_names, y = TPM_counts,
group = id, color = annotated_sex)) + # color = id
scale_color_discrete(guide = "none") + geom_point() + geom_line() +
ggtitle("LIHC samples with No/Low XIST No/Low Y chr, inclusive of repeats") +
theme(plot.title = element_text(hjust = 0.5))
dev.off()
lineplot2_fname <- paste("TPM", study, "HighXIST-HighY_Color-by-Sex.png", sep = "_")
png(lineplot2_fname)
ggplot(data = yxyy_plots, aes(x = gene_names, y = TPM_counts,
group = id, color = annotated_sex)) + # color = id
scale_color_discrete(guide = "none") + geom_point() + geom_line() +
ggtitle("LIHC samples with XIST & Y markers TPM>1.0, inclusive of repeats") +
theme(plot.title = element_text(hjust = 0.5))
dev.off()
# Log y-axis
loglineplot1_fname <- paste("TPM", study, "LowXIST-LowY_Color-by-Sex_Log-axis.png", sep = "_")
png(loglineplot1_fname)
ggplot(data = nxny_plots, aes(x = gene_names, y = TPM_counts,
group = id, color = annotated_sex)) +
scale_color_discrete(guide = "none") +
geom_point() + geom_line() + scale_y_continuous(trans = "log10")
dev.off()
loglineplot2_fname <- paste("TPM", study, "HighXIST-HighY_Color-by-Sex_Log-axis.png", sep = "_")
png(loglineplot2_fname)
ggplot(data = yxyy_plots, aes(x = gene_names, y = TPM_counts,
group = id, color = annotated_sex)) +
scale_color_discrete(guide = "none") +
geom_point() + geom_line() + scale_y_continuous(trans = "log10")
dev.off()