-
Notifications
You must be signed in to change notification settings - Fork 0
/
with_faiss.py
157 lines (121 loc) · 4.85 KB
/
with_faiss.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import os
import pickle
from abc import ABC, abstractmethod
from typing import List
import requests
import mimetypes
from bs4 import BeautifulSoup
from urllib.parse import urljoin, urlsplit
from dotenv import load_dotenv
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import FAISS as BaseFAISS
from langchain.chat_models import ChatOpenAI
from langchain.schema import AIMessage, HumanMessage, SystemMessage
from langchain.document_loaders import (
PyPDFLoader,
CSVLoader,
UnstructuredWordDocumentLoader,
WebBaseLoader,
)
load_dotenv()
OPENAI_API_KEY = os.getenv('OPEN_AI_KEY')
WEBSITE_URL = os.getenv('WEBSITE_URLS')
WEBSITE_URLS = WEBSITE_URL.split(",")
embeddings = OpenAIEmbeddings(openai_api_key=OPENAI_API_KEY)
chat = ChatOpenAI(temperature=0, openai_api_key=OPENAI_API_KEY)
class DocumentLoader(ABC):
@abstractmethod
def load_and_split(self) -> List[str]:
pass
class FAISS(BaseFAISS):
def save(self, file_path):
with open(file_path, "wb") as f:
pickle.dump(self, f)
@staticmethod
def load(file_path):
with open(file_path, "rb") as f:
return pickle.load(f)
class URLHandler:
@staticmethod
def is_valid_url(url):
parsed_url = urlsplit(url)
return bool(parsed_url.scheme) and bool(parsed_url.netloc)
@staticmethod
def extract_links(url):
response = requests.get(url)
soup = BeautifulSoup(response.text, 'html.parser')
links = []
for link in soup.find_all('a'):
href = link.get('href')
if href:
absolute_url = urljoin(url, href)
if URLHandler.is_valid_url(absolute_url):
links.append(absolute_url)
return links
@staticmethod
def extract_links_from_websites(websites):
all_links = []
for website in websites:
links = URLHandler.extract_links(website)
all_links.extend(links)
return all_links
def get_loader(file_path_or_url):
if file_path_or_url.startswith("http://") or file_path_or_url.startswith("https://"):
handle_website = URLHandler()
return WebBaseLoader(handle_website.extract_links_from_websites([file_path_or_url]))
else:
mime_type, _ = mimetypes.guess_type(file_path_or_url)
if mime_type == 'application/pdf':
return PyPDFLoader(file_path_or_url)
elif mime_type == 'text/csv':
return CSVLoader(file_path_or_url)
elif mime_type in ['application/msword',
'application/vnd.openxmlformats-officedocument.wordprocessingml.document']:
return UnstructuredWordDocumentLoader(file_path_or_url)
else:
raise ValueError(f"Unsupported file type: {mime_type}")
def train_or_load_model(train, faiss_obj_path, file_path, index_name):
if train:
loader = get_loader(file_path)
pages = loader.load_and_split()
if os.path.exists(faiss_obj_path):
faiss_index = FAISS.load(faiss_obj_path)
new_embeddings = faiss_index.from_documents(pages, embeddings, index_name=index_name, dimension=1536)
new_embeddings.save(faiss_obj_path)
else:
faiss_index = FAISS.from_documents(pages, embeddings, index_name=index_name, dimension=1536)
faiss_index.save(faiss_obj_path)
return FAISS.load(faiss_obj_path)
else:
return FAISS.load(faiss_obj_path)
def answer_questions(faiss_index):
messages = [
SystemMessage(
content='I want you to act as a document that I am having a conversation with. Your name is "AI '
'Assistant". You will provide me with answers from the given info. If the answer is not included, '
'say exactly "Hmm, I am not sure." and stop after that. Refuse to answer any question not about '
'the info. Never break character.')
]
while True:
question = input("Ask a question (type 'stop' to end): ")
if question.lower() == "stop":
break
docs = faiss_index.similarity_search(query=question, k=2)
main_content = question + "\n\n"
for doc in docs:
main_content += doc.page_content + "\n\n"
messages.append(HumanMessage(content=main_content))
ai_response = chat(messages).content
messages.pop()
messages.append(HumanMessage(content=question))
messages.append(AIMessage(content=ai_response))
print(ai_response)
def main():
faiss_obj_path = "models/sukoon.pickle"
file_path = "data/sukoon.pdf"
index_name = "sukoon"
train = int(input("Do you want to train the model? (1 for yes, 0 for no): "))
faiss_index = train_or_load_model(train, faiss_obj_path, file_path, index_name)
answer_questions(faiss_index)
if __name__ == "__main__":
main()