MCIBI (ICCV'2021)
@inproceedings{jin2021mining,
title={Mining Contextual Information Beyond Image for Semantic Segmentation},
author={Jin, Zhenchao and Gong, Tao and Yu, Dongdong and Chu, Qi and Wang, Jian and Wang, Changhu and Shao, Jie},
booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
pages={7231--7241},
year={2021}
}
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU/mIoU (ms+flip) | Download |
---|---|---|---|---|---|---|---|
DeepLabV3 | ImageNet-1k-224x224 | R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/16/110 | train/test | 38.84%/39.78% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | R-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/16/110 | train/test | 39.84%/41.52% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | S-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/32/150 | train/test | 41.18%/42.38% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | HRNetV2p-W48 | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/16/110 | train/test | 39.77%/41.48% | cfg | model | log |
DeepLabV3 | ImageNet-22k-384x384 | ViT-Large | 512x512 | LR/POLICY/BS/EPOCH: 0.001/poly/16/110 | train/test | 44.27%/45.50% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU/mIoU (ms+flip) | Download |
---|---|---|---|---|---|---|---|
DeepLabV3 | ImageNet-1k-224x224 | R-50-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 44.39%/45.97% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | R-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 45.66%/47.27% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | S-101-D8 | 512x512 | LR/POLICY/BS/EPOCH: 0.004/poly/16/180 | train/val | 46.63%/47.39% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | HRNetV2p-W48 | 512x512 | LR/POLICY/BS/EPOCH: 0.004/poly/16/180 | train/val | 45.79%/47.46% | cfg | model | log |
DeepLabV3 | ImageNet-22k-384x384 | ViT-Large | 512x512 | LR/POLICY/BS/EPOCH: 0.01/poly/16/130 | train/val | 49.73%/50.99% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU (ms+flip) | Download |
---|---|---|---|---|---|---|---|
DeepLabV3 | ImageNet-1k-224x224 | R-50-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/16/440 | trainval/test | 79.97% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | R-101-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/16/440 | trainval/test | 82.10% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | S-101-D8 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/16/500 | trainval/test | 81.51% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | HRNetV2p-W48 | 512x1024 | LR/POLICY/BS/EPOCH: 0.01/poly/16/500 | trainval/test | 82.54% | cfg | model | log |
Segmentor | Pretrain | Backbone | Crop Size | Schedule | Train/Eval Set | mIoU/mIoU (flip) | Download |
---|---|---|---|---|---|---|---|
DeepLabV3 | ImageNet-1k-224x224 | R-50-D8 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 53.73%/54.08% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | R-101-D8 | 473x473 | LR/POLICY/BS/EPOCH: 0.01/poly/32/150 | train/val | 55.02%/55.42% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | S-101-D8 | 473x473 | LR/POLICY/BS/EPOCH: 0.007/poly/40/150 | train/val | 56.21%/56.34% | cfg | model | log |
DeepLabV3 | ImageNet-1k-224x224 | HRNetV2p-W48 | 473x473 | LR/POLICY/BS/EPOCH: 0.007/poly/40/150 | train/val | 56.40%/56.99% | cfg | model | log |
You can also download the model weights from following sources:
- BaiduNetdisk: https://pan.baidu.com/s/1gD-NJJWOtaHCtB0qHE79rA with access code s757
Due to differences in the testing environment (such as GPU, PyTorch, and CUDA versions), the model's performance may fluctuate by approximately 0.1%.