forked from BlueBrain/atlas-densities
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
55 lines (52 loc) · 1.71 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
#!/usr/bin/env python
from setuptools import find_packages, setup
with open("README.rst") as f:
README = f.read()
setup(
name="atlas-densities",
author="Blue Brain Project, EPFL",
description="Library containing command lines and tools to compute volumetric cell densities in the rodent brain",
long_description=README,
long_description_content_type="text/x-rst",
url="https://github.com/BlueBrain/atlas-densities",
download_url="https://github.com/BlueBrain/atlas-densities",
license="Apache-2",
python_requires=">=3.7.0",
install_requires=[
"atlas-commons>=0.1.4",
"click>=7.0,<=8.1.3",
"cgal-pybind>=0.1.1",
"joblib>=1.3.0",
"numpy>=1.15.0",
"openpyxl>=3.0.3",
"pandas>=1.0.3",
"PyYAML>=5.3.1",
# Since version 1.6.0, scipy.optimize.linprog has fast, new methods for large, sparse problems
# from the HiGHS library. We use the "highs" method in the densities module.
"scipy>=1.6.0",
"tqdm>=4.44.1",
"voxcell>=3.0.0",
],
extras_require={
"tests": [
"pytest>=4.4.0",
],
},
packages=find_packages(),
include_package_data=True,
entry_points={"console_scripts": ["atlas-densities=atlas_densities.app.cli:cli"]},
use_scm_version={
"local_scheme": "no-local-version",
},
setup_requires=[
"setuptools_scm",
],
classifiers=[
"Development Status :: 2 - Pre-Alpha",
"Programming Language :: Python",
"Programming Language :: Python :: 3",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
],
)