-
-
Notifications
You must be signed in to change notification settings - Fork 39
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Build on LuxCore #206
Comments
Some very raw initial ideas for the implementation: struct ESNCell{use_bias, A, B, W, I, S} <: LuxCore.AbstractExplicitLayer
activation::A
in_dims::Int
res_dims::Int
init_bias::B
init_reservoir::W
init_input::I
#init_feedback::F
init_state::S
leak_coefficient::Number
end
function ESNCell((in_dims, res_dims)::Pair{<:Int, <:Int}, activation=tanh;
use_bias::Bool=false, init_bias=zeros32, init_reservoir=glorot_uniform,
init_input=glorot_uniform, init_state=zeros32)
return ESNCell{use_bias,typeof(activation),typeof(init_bias),
typeof(init_reservoir),typeof(init_input),typeof(init_state)}(
activation,in_dims,res_dims,init_bias,init_reservoir,init_input,init_state)
end
# none of the weights in a esn cell are trainable. should the be parameters or states?
function LuxCore.initialparameters(rng::AbstractRNG,
esn::ESNCell{use_bias}) where {use_bias}
ps = (input_matrix=esn.init_input(rng, esn.res_dims, esn.in_dims),
reservoir_matrix=esn.init_reservoir(rng, esn.res_dims, esn.res_dims))
use_bias && (ps = merge(ps, (bias=esn.init_bias(rng, esn.res_dims),)))
return ps
end
function LuxCore.initialstates(rng::AbstractRNG,
esn::ESNCell{use_bias}) where {use_bias}
randn(rng, 1)
st = (states = nothing, rng=LuxCore.replicate(rng))
return st
end
const _ESNCellInputType = Tuple{<:AbstractMatrix, Tuple{<:AbstractMatrix}}
function (esn::ESNCell{true})((x, (hidden_state,))::_ESNCellInputType,
ps, st::NamedTuple)
h_new =(1 - esn.leaky_coefficient) * x + esn.activation.(st.input_matrix * x .+
st.reservoir_matrix * hidden_state .+ st.bias)
return (h_new, (h_new,)), st
end
function (esn::ESNCell{false})((x, (hidden_state,))::_ESNCellInputType,
ps, st::NamedTuple)
h_new = (1 - esn.leaky_coefficient) * x + esn.activation.(ps.input_matrix * x .+
ps.reservoir_matrix * hidden_state)
return (h_new, (h_new,)), st
end
# very WIP stuff here
# passes the data through the esn and obtains the states
function instantiate(esn::ESNCell, xs, ps, st)
st_new = (:states)
return NamedTuple(:last_state, :states)
end
struct ESN{T} <: LuxCore.AbstractExplicitContainerLayer{(:reservoir, :states, :readout)}
reservoir::LuxCore.AbstractExplicitLayer
states::Function # here go the nlas and state augmentations # this should be something like a chain
readout::T # this has to be generic to accommodate multiple types of readouts # how do these return ps and st?
end
function ESN(in_size::Int, res_size::Int, out_size::Int;
leaky_coefficient::Number = 0.0, init_reservoir = rand_sparse, init_input = scaled_rand,
bias=false, init_bias=rand, readout = StandardRidge(0.0), states = States(), activation=tanh)
esn = ESNCell(in_size, res_size, activation; bias=bias, init_reservoir=init_reservoir)
end |
Actually I think all the weights in the ESN have to be states instead of parameters, in case someone needs to build a larger model with ESNs function LuxCore.initialparameters(rng::AbstractRNG,
esn::ESNCell{use_bias}) where {use_bias}
return NamedTuple()
end
function LuxCore.initialstates(rng::AbstractRNG,
esn::ESNCell{use_bias}) where {use_bias}
randn(rng, 1)
st = (input_matrix=esn.init_input(rng, esn.res_dims, esn.in_dims),
reservoir_matrix=esn.init_reservoir(rng, esn.res_dims, esn.res_dims),
states = nothing, rng=LuxCore.replicate(rng))
use_bias && (st = merge(st, (bias=esn.init_bias(rng, esn.res_dims),)))
return st
end |
Since the design of Lux models has changed a bit in the meantime this new approach should work now using LuxCore, Random, ConcreteStructs, Static, WeightInitializers, ArrayInterface
using Static: StaticBool, StaticInt, StaticSymbol,
True, False, static, known, dynamic, StaticInteger
import LuxCore: AbstractLuxLayer, AbstractLuxContainerLayer, AbstractLuxWrapperLayer,
initialparameters, initialstates, parameterlength, statelength, outputsize,
setup, apply, replicate
const IntegerType = Union{Integer, StaticInteger}
const BoolType = Union{StaticBool, Bool, Val{true}, Val{false}}
const InputType = Tuple{<:AbstractMatrix, Tuple{<:AbstractMatrix}}
### from Lux.Utils
function sample_replicate(rng::AbstractRNG)
rand(rng)
return LuxCore.replicate(rng)
end
function init_hidden_state(rng::AbstractRNG, rnn, inp::AbstractMatrix)
y = similar(inp, rnn.out_dims, Base.size(inp, 2))
copyto!(y, rnn.init_state(rng, size(y)...))
return ArrayInterface.aos_to_soa(y)
end
#from Lux extended_ops
const KnownSymbolType{v} = Union{Val{v}, StaticSymbol{v}}
function has_bias(l::AbstractLuxLayer)
res = known(getproperty(l, Val(:use_bias)))
return ifelse(res === nothing, false, res)
end
function getproperty(x, ::KnownSymbolType{v}) where {v}
return v ∈ Base.propertynames(x) ? Base.getproperty(x, v) : nothing
end
###
@concrete struct ESNCell <: LuxCore.AbstractLuxLayer
activation
in_dims <: IntegerType
out_dims <: IntegerType
init_bias
init_reservoir
init_input
#init_feedback::F
init_state
leak_coefficient
use_bias <: StaticBool
end
function ESNCell((in_dims, out_dims)::Pair{<:Int, <:Int}, activation=tanh;
use_bias::BoolType=True(), init_bias=zeros32, init_reservoir=glorot_uniform,
init_input=glorot_uniform, init_state=zeros32, leak_coefficient = 1.0)
return ESNCell(activation, in_dims, out_dims, init_bias, init_reservoir,
init_input, init_state, leak_coefficient, use_bias)
end
function initialparameters(rng::AbstractRNG, esn::ESNCell)
ps = (input_matrix = esn.init_input(rng, esn.out_dims, esn.in_dims),
reservoir_matrix = esn.init_reservoir(rng, esn.out_dims, esn.out_dims),
hidden_state = esn.init_state(rng, esn.out_dims))
if has_bias(esn)
ps = merge(ps, (bias = esn.init_bias(rng, esn.out_dims),))
end
return ps
end
function initialstates(rng::AbstractRNG, esn::ESNCell)
return (rng = sample_replicate(rng),)
end
function (esn::ESNCell)(inp::AbstractMatrix, ps, st::NamedTuple)
rng = replicate(st.rng)
hidden_state = init_hidden_state(rng, esn, inp)
return esn((inp, (hidden_state,)), ps, merge(st, (; rng)))
end
function (esn::ESNCell)((inp, (hidden_state,))::InputType, ps, st::NamedTuple)
candidate_h = esn.activation.(ps.input_matrix * inp .+
ps.reservoir_matrix * hidden_state .+ ps.bias)
h_new = (1 - esn.leak_coefficient) .* hidden_state .+
esn.leak_coefficient .* candidate_h
return (h_new, (h_new,)), st
end |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
A lot of recent issues can be tackled by an internal refactor of the drivers and generally of how the models are defined. Since this refactor is in the plans, it is worth exploring the possibility of building on LuxCore.jl, to provide a familiar interface to SciML users. I will update this issue with ideas on how to build the components
The text was updated successfully, but these errors were encountered: