-
Notifications
You must be signed in to change notification settings - Fork 0
/
text_summarizer.py
92 lines (68 loc) · 2.67 KB
/
text_summarizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
''' text summarizer model using nltk '''
import nltk
from nltk.corpus import stopwords
from nltk.cluster.util import cosine_distance
import numpy as np
import networkx as nx
def read_article(filedata):
# file = open(file_name, "r")
# filedata = file.readlines()
article = filedata.split(". ")
sentences = []
for sentence in article:
# print(sentence)
sentences.append(sentence.replace("[^a-zA-Z]", " ").split(" "))
sentences.pop()
return sentences
def sentence_similarity(sent1, sent2, stopwords=None):
if stopwords is None:
stopwords = []
sent1 = [w.lower() for w in sent1]
sent2 = [w.lower() for w in sent2]
all_words = list(set(sent1 + sent2))
vector1 = [0] * len(all_words)
vector2 = [0] * len(all_words)
# build the vector for the first sentence
for w in sent1:
if w in stopwords:
continue
vector1[all_words.index(w)] += 1
# build the vector for the second sentence
for w in sent2:
if w in stopwords:
continue
vector2[all_words.index(w)] += 1
return 1 - cosine_distance(vector1, vector2)
def build_similarity_matrix(sentences, stop_words):
# Create an empty similarity matrix
similarity_matrix = np.zeros((len(sentences), len(sentences)))
for idx1 in range(len(sentences)):
for idx2 in range(len(sentences)):
if idx1 == idx2: #ignore if both are same sentences
continue
similarity_matrix[idx1][idx2] = sentence_similarity(sentences[idx1], sentences[idx2], stop_words)
return similarity_matrix
def generate_summary(filedata, top_n=5):
nltk.download("stopwords")
stop_words = stopwords.words('english')
summarize_text = []
# Read text and split it
sentences = read_article(filedata)
# Generate Similary Martix across sentences
sentence_similarity_martix = build_similarity_matrix(sentences, stop_words)
# Rank sentences in similarity martix
sentence_similarity_graph = nx.from_numpy_array(sentence_similarity_martix)
scores = nx.pagerank(sentence_similarity_graph)
# Sort the rank and pick top sentences
ranked_sentence = sorted(((scores[i],s) for i,s in enumerate(sentences)), reverse=True)
# print("Indexes of top ranked_sentence order are ", ranked_sentence)
for i in range(top_n):
summarize_text.append(" ".join(ranked_sentence[i][1]))
# Output summary
# f = open("Model\\sample_summary.txt", "w")
# f.write( ". ".join(summarize_text))
# f.close()
summary_text = ". ".join(summarize_text)
return summary_text
# run test harness
# generate_summary( "Model\\fb.txt", 2)