forked from Hollyqui/PyDrink
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaddition.py
86 lines (73 loc) · 3.25 KB
/
addition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
"""
By Felix Quinque & Zbigniew Szymon Fonau
This method creates an array with the BAC over time for all drinks consumed, it does not yet apply elimination
"""
import matplotlib.pyplot as plt
import numpy as np
import datetime as dt
import matplotlib.dates as mdates
import pandas as pd
class Adder:
def __init__(self, height, weight, minute):
self.minute = minute
self.time_array = [] # Array that will contain The Blood Alcohol Concentration (BAC) over time
self.height = height
self.weight = weight
#find the widmark factor
#Formulas taken from Searle, J. (2014). 'Alcohol calculations and their uncertainty'.
def widmark(self, weight, height, gender):
BMI = weight/pow((height/100),2)
if gender:
male_r = 1.0181 -0.01213 * BMI
return male_r
else:
female_r = 0.9367 - 0.01240 * BMI
return female_r
#finds how much alcohol of each drink is absorbed at each time
def drink(self, volume, percent, minutes, half_life):
half_lifes_passed = minutes/half_life
alcohol = (volume/1000)*(percent/100)- (volume/1000)*(percent/100) * pow(0.5, half_lifes_passed)
return alcohol
#Calculates The BAC for every minute
def bac_calc(self,alcohol, widmark_factor, weight):
density = 0.78974
C = (100 * alcohol * density) / (widmark_factor * weight) #C is here the concentration of alcohol in blood
if C < 0: return 0 #if the concentration would be under 0 return 0 since you can't have a concentration <0
else: return C
def array(self, volume, percent, time, half_life):
try:
self.time_array = np.load('added_drinks.npy') #If there is an array with drinks use that (allows muliple drinks)
except:
self.time_array = []
minutes = -time
gender = True
temp_time_array = []
while len(temp_time_array) < 1440+self.minute: # makes a graph that shows the BAC for 24 hours after intake
abs_alc = self.drink(volume, percent, minutes, half_life)
temp_time_array.append(self.bac_calc(abs_alc, self.widmark(self.weight, self.height, gender), self.weight))
minutes += 1
if len(self.time_array) == 0:
self.time_array = temp_time_array
else: self.time_array = np.add(self.time_array, temp_time_array)
np.save("added_drinks.npy", self.time_array)
def plot(self):
x = [ dt.datetime.now() +dt.timedelta(hours = i) for i in range(int(len(self.time_array)))]
times = pd.date_range(start=self.minute, periods=len(self.time_array), freq='1min')
fig, ax = plt.subplots(1)
fig.autofmt_xdate()
plt.plot(times, self.time_array)
xfmt = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(xfmt)
plt.show()
xfmt = mdates.DateFormatter('%H:%M')
ax.xaxis.set_major_formatter(xfmt)
#plt.plot( x, self.time_array)
#plt.gcf().autofmt_xdate()
# plt.xlim(left=self.minute)
# plt.ylabel('BAC')
#
# plt.show()
if __name__ == '__main__':
add = Adder(170,60,800)
add.array(330, 9, 1120)
add.plot()