forked from lshug/LearnToPayAttention-Keras
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathVGG-Train.py
45 lines (32 loc) · 3.15 KB
/
VGG-Train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
import LearnToPayAttention
import numpy as np
import scipy.io as sio
from keras.datasets import cifar10
from keras.datasets import cifar100
import cv2
if __name__ == "__main__":
(x10, y10), (x_test, y_test) = cifar10.load_data()
(x100,y100),(x_test2,y_test2) = cifar100.load_data(label_mode='fine')
x10 = np.reshape(x10,[50000,32,32,3])
x100 = np.reshape(x100,[50000,32,32,3])
svhn_data = sio.loadmat('svhn.mat')
xsvhn = svhn_data['X']
ysvhn = svhn_data['y']
xsvhn = np.reshape(xsvhn,[73257,32,32,3])
ysvhn = np.squeeze(ysvhn)
#todo: normalize and color-normalize x10, x100, and xsvhn.
#todo: implement and crop cub-200-2011
vggatt1concatdpCIFAR10 = AttentionVGG(att='att1', gmode='concat', compatibilityfunction='dp', height=32, width=32, channels=3, outputclasses=10).StandardFit("cifar10",x10,y10)
vggatt1concatdpCIFAR100 = AttentionVGG(att='att1', gmode='concat', compatibilityfunction='dp', height=32, width=32, channels=3, outputclasses=100).StandardFit("cifar100",x100,y100)
vggatt1concatpcCIFAR10 = AttentionVGG(att='att1', gmode='concat', compatibilityfunction='pc', height=32, width=32, channels=3, outputclasses=100).StandardFit("cifar10",x10,y10)
vggatt1concatpcCIFAR100 = AttentionVGG(att='att1', gmode='concat', compatibilityfunction='pc', height=32, width=32, channels=3, outputclasses=100).StandardFit("cifar100",x100,y100)
vggatt2indepdpCIFAR10 = AttentionVGG(att='att2', gmode='indep', compatibilityfunction='dp', height=32, width=32, channels=3, outputclasses=10).StandardFit("cifar10",x10,y10)
vggatt2indepdpCIFAR100 = AttentionVGG(att='att2', gmode='indep', compatibilityfunction='dp', height=32, width=32, channels=3, outputclasses=100).StandardFit("cifar100",x100,y100)
vggatt2indeppcCIFAR10 = AttentionVGG(att='att2', gmode='indep', compatibilityfunction='pc', height=32, width=32, channels=3, outputclasses=10).StandardFit("cifar10",x10,y10)
vggatt2indeppcCIFAR100 = AttentionVGG(att='att2', gmode='indep', compatibilityfunction='pc', height=32, width=32, channels=3, outputclasses=100).StandardFit("cifar100",x100,y100)
vggatt2concatpcCIFAR10 = AttentionVGG(att='att2', gmode='concat', compatibilityfunction='pc', height=32, width=32, channels=3, outputclasses=10).StandardFit("cifar10",x10,y10)
vggatt2concatpcCIFAR100 = AttentionVGG(att='att2', gmode='concat', compatibilityfunction='pc', height=32, width=32, channels=3, outputclasses=100).StandardFit("cifar100",x100,y100)
vggatt2concatpcSVHN = AttentionVGG(att='att2', gmode='concat', compatibilityfunction='pc', height=32, width=32, channels=3, outputclasses=10).StandardFit("svhn",xsvhn,ysvhn)
vggatt3concatpcCIFAR10 = AttentionVGG(att='att3', gmode='concat', compatibilityfunction='pc', height=32, width=32, channels=3, outputclasses=10).StandardFit("cifar10",x10,y10)
vggatt3concatpcCIFAR100 = AttentionVGG(att='att3', gmode='concat', compatibilityfunction='pc', height=32, width=32, channels=3, outputclasses=100).StandardFit("cifar100",x100,y100)
vggatt3concatpcSVHN = AttentionVGG(att='att3', gmode='concat', compatibilityfunction='pc', height=32, width=32, channels=3, outputclasses=10).StandardFit("svhn",xsvhn,ysvhn)