forked from tttianhao/CLEAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgmm.py
49 lines (35 loc) · 1.48 KB
/
gmm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
import torch
from src.CLEAN.utils import *
from src.CLEAN.model import LayerNormNet
from src.CLEAN.distance_map import *
from src.CLEAN.evaluate import *
from src.CLEAN.dataloader import mine_hard_negative
from src.CLEAN.infer import infer_maxsep
from src.CLEAN.uncertainty import get_dist
from sklearn import mixture
import matplotlib.pyplot as plt
import numpy as np
import pickle
import random
train_data = "split100"
id_ec_train, ec_id_dict_train = get_ec_id_dict('./data/' + train_data + '.csv')
counter = 0
dist_map = pickle.load(open('./data/distance_map/split100.pkl', 'rb'))
negative = mine_hard_negative(dist_map, 5)
for i in range(40):
counter = 0
all_distance = []
for ec in random.choices(list(ec_id_dict_train.keys()), k = 500):
distances, neg_distances = get_dist(ec, train_data,
report_metrics=True, pretrained=True, neg_target = 100, negative = negative)
all_distance.extend(neg_distances)
all_distance.extend(distances)
if counter % 100 == 0:
print(counter)
counter += 1
dist = np.reshape(all_distance, (len(all_distance), 1))
main_GMM = mixture.GaussianMixture(n_components=2, covariance_type='full',max_iter=1000,n_init=30,tol=1e-4)
main_GMM.fit(dist)
pickle.dump(main_GMM, open('./gmm_test/GMM_100_500_' + str(i) + '.pkl', 'wb'))
plt.hist(all_distance, bins = 500, alpha = 0.05)
plt.savefig('./gmm_test/GMM_100_500_' + str(i) + '.png')