Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[cker] Introduce cker for avgpool #14086

Merged
merged 3 commits into from
Oct 1, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
93 changes: 93 additions & 0 deletions compute/cker/include/cker/train/operation/AveragePool.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,93 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#ifndef __NNFW_CKER_TRAIN_OPERATION_AVERAGEPOOL_H__
#define __NNFW_CKER_TRAIN_OPERATION_AVERAGEPOOL_H__

#include "cker/Shape.h"
#include "cker/Utils.h"
#include "cker/eigen/Utils.h"

#include <Eigen/Core>

namespace nnfw
{
namespace cker
{
namespace train
{

inline void AveragePool2DGrad(const PoolParams &params, const Shape &incoming_shape,
const float *incoming_data, const Shape &grad_shape, float *grad_data)
{
assert(grad_shape.DimensionsCount() == 4);
assert(incoming_shape.DimensionsCount() == 4);

const int batches = MatchingDim(incoming_shape, 0, grad_shape, 0);
const int grad_height = grad_shape.Dims(1);
const int grad_width = grad_shape.Dims(2);
const int incoming_height = incoming_shape.Dims(1);
const int incoming_width = incoming_shape.Dims(2);
const int stride_height = params.stride_height;
const int stride_width = params.stride_width;

// initialize grad_data
std::fill(grad_data, grad_data + grad_shape.FlatSize(), 0.0);

const auto incoming_mat = MapAsMatrixWithLastDimAsRows(incoming_data, incoming_shape);
auto grad_mat = MapAsMatrixWithLastDimAsRows(grad_data, grad_shape);

for (int b = 0; b < batches; ++b)
{
for (int h = 0; h < incoming_height; ++h)
{
for (int w = 0; w < incoming_width; ++w)
{
// (h_start, h_end) * (w_start, w_end) is input range
// that output is projected from.
int h_start = h * stride_height - params.padding_values.height;
int h_end = std::min(h_start + params.filter_height, grad_height);
h_start = h_start < 0 ? 0 : h_start;

int w_start = w * stride_width - params.padding_values.width;
int w_end = std::min(w_start + params.filter_width, grad_width);
w_start = w_start < 0 ? 0 : w_start;

int count = (h_end - h_start) * (w_end - w_start);

if (h_end <= 0 || w_end <= 0 || count <= 0 || h_start >= grad_height ||
w_start >= grad_width)
continue;

int incoming_offset = NodeOffset(b, h, w, incoming_height, incoming_width);
for (int ph = h_start; ph < h_end; ++ph)
{
for (int pw = w_start; pw < w_end; ++pw)
{
int grad_offset = NodeOffset(b, ph, pw, grad_height, grad_width);
grad_mat.col(grad_offset) += incoming_mat.col(incoming_offset) / count;
}
}
}
}
}
}

} // namespace train
} // namespace cker
} // namespace nnfw

#endif // __NNFW_CKER_TRAIN_OPERATION_AVERAGEPOOL_H__
251 changes: 251 additions & 0 deletions compute/cker/src/train/AveragePool.test.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
/*
* Copyright (c) 2024 Samsung Electronics Co., Ltd. All Rights Reserved
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/

#include <cker/eigen/Utils.h>
#include <cker/operation/AveragePool.h>
#include <cker/train/operation/AveragePool.h>
#include <cker/Shape.h>

#include <gtest/gtest.h>
#include <vector>

namespace
{
using namespace nnfw::cker;

template <typename T> class AvgPoolOpVerifier
{
private:
const PoolParams _op_params;
const Shape _in_shape;
const Shape _out_shape;

public:
AvgPoolOpVerifier(const nnfw::cker::PoolParams &op_params, const Shape &in_shape,
const Shape &out_shape)
: _op_params(op_params), _in_shape(in_shape), _out_shape(out_shape)
{
}

public:
void verifyForward(const std::vector<T> input, const std::vector<T> expected_output,
bool expect_eq = true)
{
assert(input.size() == _in_shape.FlatSize());
assert(expected_output.size() == _out_shape.FlatSize());

std::vector<T> cacluated_output(_out_shape.FlatSize());
nnfw::cker::AveragePool<float>(_op_params, _in_shape, input.data(), _out_shape,
cacluated_output.data());

if (expect_eq)
EXPECT_EQ(expected_output, cacluated_output);
else
EXPECT_NE(expected_output, cacluated_output);
}

void verifyBackward(const std::vector<T> incoming_data, const std::vector<T> expected_grad_data,
bool expect_eq = true)
{
assert(incoming_data.size() == _out_shape.FlatSize());
assert(expected_grad_data.size() == _in_shape.FlatSize());

std::vector<T> calcuated_grad(_in_shape.FlatSize());
nnfw::cker::train::AveragePool2DGrad(_op_params, _out_shape, incoming_data.data(), _in_shape,
calcuated_grad.data());

if (expect_eq)
{
for (size_t i = 0; i < expected_grad_data.size(); i++)
{
EXPECT_FLOAT_EQ(expected_grad_data[i], calcuated_grad[i]);
}
}

else
EXPECT_NE(expected_grad_data, calcuated_grad);
}
};

} // namespace

TEST(CKer_Operation, AveragePool2D)
{
// Depth 1 case
{
nnfw::cker::PoolParams op_param;
{
op_param.stride_height = 1;
op_param.stride_width = 1;
op_param.filter_height = 2;
op_param.filter_width = 2;
op_param.padding_values.height = 0;
op_param.padding_values.width = 0;
op_param.float_activation_max = std::numeric_limits<float>::max();
op_param.float_activation_min = std::numeric_limits<float>::lowest();
}
nnfw::cker::Shape in = {1, 3, 3, 1};
nnfw::cker::Shape out = {1, 2, 2, 1};

AvgPoolOpVerifier<float> verifier(op_param, in, out);

/**
* input : output:
*
* 10(0) 15(1) 2(2)
* 7(3) 8(4) 9(5) - (forward) -> 10(4) 8.5(4)
* 10(6) 1(7) 0(8) 6.5(4) 4.5(4)
*/

std::vector<float> input = {10, 15, 2, 7, 8, 9, 10, 1, 0};
std::vector<float> expected_output = {10, 8.5, 6.5, 4.5};
verifier.verifyForward(input, expected_output);

/**
* output_deriv: input_deriv:
*
*
* 0.4 0.4 0.1 0.2 0.1
* 0.4 0.4 - (backward) -> 0.2 0.4 0.2
* 0.1 0.2 0.1
*/

std::vector<float> output_deriv = {0.4, 0.4, 0.4, 0.4};
std::vector<float> expected_input_deriv = {0.1, 0.2, 0.1, 0.2, 0.4, 0.2, 0.1, 0.2, 0.1};
verifier.verifyBackward(output_deriv, expected_input_deriv);
}

// Depth 2 case
{
nnfw::cker::PoolParams op_param;
{
op_param.stride_height = 1;
op_param.stride_width = 1;
op_param.filter_height = 3;
op_param.filter_width = 3;
op_param.padding_values.height = 0;
op_param.padding_values.width = 0;
op_param.float_activation_max = std::numeric_limits<float>::max();
op_param.float_activation_min = std::numeric_limits<float>::lowest();
}
nnfw::cker::Shape in = {1, 3, 3, 2};
nnfw::cker::Shape out = {1, 1, 1, 2};

AvgPoolOpVerifier<float> verifier(op_param, in, out);

/**
* depth[0]
* input : output:
*
* 10(0) 15(1) 2(2)
* 10(3) 12(4) 17(5) -(forward)-> 16(0)
* 50(6) 30(7) -2(8)
*
*
* depth[1]
* input: output:
*
* -1(0) 2(1) 3(2)
* 8(3) 9(4) 2(5) -(forward)-> 4(0)
* 4(6) 2(7) 7(8)
*/

std::vector<float> input(in.FlatSize());
auto input_mat = MapAsMatrixWithLastDimAsRows(input.data(), in);
input_mat << /* depth0 */ 10, 15, 2, 10, 12, 17, 50, 30, -2,
/* depth1 */ -1, 2, 3, 8, 9, 2, 4, 2, 7;
std::vector<float> expected_output = {16, 4};
verifier.verifyForward(input, expected_output);

/**
* depth[0]
* ouput_deriv: input_deriv:
*
* 0.02 0.02 0.02
* 0.18 -(backward)-> 0.02 0.02 0.02
* 0.02 0.02 0.02
*
*
* depth[1]
* output_deriv: input_deriv:
* 0.04 0.04 0.04
* 0.36 -(backward)-> 0.04 0.04 0.04
* 0.04 0.04 0.04
*/

std::vector<float> output_deriv = {0.18, 0.36};
std::vector<float> expected_input_deriv(in.FlatSize());
auto input_deriv_mat = MapAsMatrixWithLastDimAsRows(expected_input_deriv.data(), in);
input_deriv_mat << /* depth0 */ 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02,
/* depth1 */ 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04, 0.04;
verifier.verifyBackward(output_deriv, expected_input_deriv);
}
}

TEST(CKer_Operation, neg_AveragePoolInvalidExpectedValue)
{
// Invalid expected value
{
nnfw::cker::PoolParams op_param;
{
op_param.stride_height = 1;
op_param.stride_width = 1;
op_param.filter_height = 2;
op_param.filter_width = 2;
op_param.padding_values.height = 0;
op_param.padding_values.width = 0;
op_param.float_activation_max = std::numeric_limits<float>::max();
op_param.float_activation_min = std::numeric_limits<float>::lowest();
}
nnfw::cker::Shape in = {1, 2, 2, 1};
nnfw::cker::Shape out = {1, 1, 1, 1};

AvgPoolOpVerifier<float> verifier(op_param, in, out);

std::vector<float> input = {0, 0, 0, 0};
std::vector<float> expected_output = {-1};

verifier.verifyForward(input, expected_output, false);
}

// Invalid expected value
{
nnfw::cker::PoolParams op_param;
{
op_param.stride_height = 2;
op_param.stride_width = 2;
op_param.filter_height = 2;
op_param.filter_width = 2;
op_param.padding_values.height = 1;
op_param.padding_values.width = 1;
op_param.float_activation_max = std::numeric_limits<float>::max();
op_param.float_activation_min = std::numeric_limits<float>::lowest();
}

nnfw::cker::Shape in = {1, 2, 2, 1};
nnfw::cker::Shape out = {1, 2, 2, 1};

AvgPoolOpVerifier<float> verifier(op_param, in, out);

std::vector<float> input = {0, 0, 0, 0};
std::vector<float> expected_output = {0, 0, 0, 0};
verifier.verifyForward(input, expected_output);

std::vector<float> output_deriv = {0.1, 0.1, 0.1, 0.2};
std::vector<float> expected_input_deriv = {0.1, 0.1, 0.1, 0.1};
verifier.verifyBackward(output_deriv, expected_input_deriv, false);
}
}